scholarly journals Comparison of turbulence models for two-phase flow in a centrifugal separator

2021 ◽  
Vol 264 ◽  
pp. 01009
Author(s):  
Erkin Madaliev ◽  
Murodil Madaliev ◽  
Kamol Adilov ◽  
Tohir Pulatov

The numerical results of mathematical modeling of a two-phase, axisymmetric swirling turbulent flow in the separation zone of a centrifugal separator are presented. The movement of the carrier gas flow was modeled using RANS, which were closed using the SARC turbulence models, the SST-RC model, and the SSG/LRR-RSM-w2012 model. For the numerical solution of the problem, the SIMPLE algorithm was used. The article compares the results of numerical calculation of turbulence models. The results of a comparison of numerical calculations with allowance for the effect of the solid phase on the dynamics of the air medium and without taking it into account with experimental data are presented.

Author(s):  
Z.M. Malikov ◽  
◽  
M.E. Madaliev ◽  

The numerical results of mathematical modeling of a two-phase axisymmetric swirling turbulent flow in a separation zone of a centrifugal separator are presented. The motion of the carrier gas flow is described by the Reynolds-averaged Navier-Stokes equations. A system of equations is enclosed by the Spalart-Allmaras turbulence model. The study is based on the obtained fields of averaged velocities of the carrier medium, with account for turbulent diffusion. Numerical solution to the problem is implemented using the semi-implicit method for pressure linked equations (SIMPLE). The results obtained when the solid phase effect on the air flow dynamics is taken into account are compared with those obtained when the effect is left out of account. The numerical calculations are validated using the experimental data.


2003 ◽  
Vol 3 ◽  
pp. 266-270
Author(s):  
B.H. Khudjuyerov ◽  
I.A. Chuliev

The problem of the stability of a two-phase flow is considered. The solution of the stability equations is performed by the spectral method using polynomials of Chebyshev. A decrease in the stability region gas flow with the addition of particles of the solid phase. The analysis influence on the stability characteristic of Stokes and Archimedes forces.


2010 ◽  
Vol 29-32 ◽  
pp. 658-663
Author(s):  
Chuan Jun Li ◽  
Gang Yu ◽  
Xin Wang

In order to acquire the solid-fluid two phase flow centrifugal pump’s slurry head according with the fact, the solid phase effect coefficient must be calculated precisely. By analysising the acting forces on the solid particle, its moving differential equation was established. And the calculating formula of the solid phase effect coefficient was deduced based on the equation. For the sake of verifying its validity, a test of contrast and comparison on the calculating slurry heads by some ways was carried out. The results shows that the relative error values of the slurry head calculated are less than 2.00% with a small and stably error band. The method has the advantage of simple calculating process, high accuracy, low randomness and good practicability.


2012 ◽  
Vol 505 ◽  
pp. 170-174
Author(s):  
Wei Dong Shi ◽  
Liang Zhang ◽  
Hai Yan He ◽  
Jiang Hai Liu ◽  
Liang Chen

In this paper, a swirl nozzle is established to disperse superfine powder aerodynamically. And Reynolds stress model (RSM) is adopted to simulate the strongly swirling, compressible and transonic gas flow in the nozzle and its rear. Combined with discrete phase model (DPM), the concentration distribution of particle group in size of 2.5μm is studied. The simulated results show that, the distribution of swirl strength is determined basically by the nozzle structure, while the total pressure has little effect on it; compared with an irrotational nozzle, the swirl nozzle could achieve a better dispersing effect for superfine powder.


2018 ◽  
Vol 22 (5) ◽  
pp. 1905-1921 ◽  
Author(s):  
Jin Wang ◽  
Milan Vujanovic ◽  
Bengt Sunden

This paper presents a review of particle deposition research in film-cooled gas turbines based on the recent open literature. Factors affecting deposition capture efficiency and film cooling effectiveness are analyzed. Experimental studies are summarized into two discussions in actual and virtual deposition environments. For investigation in virtual deposition environments, available and reasonable results are obtained by comparison of the Stokes numbers. Recent advances in particle deposition modeling for computational fluid dynamics are also reviewed. Various turbulence models for numerical simulations are investigated, and solutions for treatment of the particle sticking probability are described. In addition, analysis of injecting mist into the coolant flow is conducted to investigate gas-liquid two-phase flow in gas turbines. The conclusion remains that considerable re-search is yet necessary to fully understand the roles of both deposition and multi-phase flow in gas turbines.


2020 ◽  
Vol 55 (8) ◽  
pp. 1012-1028
Author(s):  
Z. M. Malikov ◽  
M. E. Madaliev

2021 ◽  
Author(s):  
Ekhwaiter Abobaker ◽  
Abadelhalim Elsanoose ◽  
Mohammad Azizur Rahman ◽  
Faisal Khan ◽  
Amer Aborig ◽  
...  

Abstract Perforation is the final stage in well completion that helps to connect reservoir formations to wellbores during hydrocarbon production. The drilling perforation technique maximizes the reservoir productivity index by minimizing damage. This can be best accomplished by attaining a better understanding of fluid flows that occur in the near-wellbore region during oil and gas operations. The present work aims to enhance oil recovery by modelling a two-phase flow through the near-wellbore region, thereby expanding industry knowledge about well performance. An experimental procedure was conducted to investigate the behavior of two-phase flow through a cylindrical perforation tunnel. Statistical analysis was coupled with numerical simulation to expand the investigation of fluid flow in the near-wellbore region that cannot be obtained experimentally. The statistical analysis investigated the effect of several parameters, including the liquid and gas flow rate, liquid viscosity, permeability, and porosity, on the injection build-up pressure and the time needed to reach a steady-state flow condition. Design-Expert® Design of Experiments (DoE) software was used to determine the numerical simulation runs using the ANOVA analysis with a Box-Behnken Design (BBD) model and ANSYS-FLUENT was used to analyses the numerical simulation of the porous media tunnel by applying the volume of fluid method (VOF). The experimental data were validated to the numerical results, and the comparison of results was in good agreement. The numerical and statistical analysis demonstrated each investigated parameter’s effect. The permeability, flow rate, and viscosity of the liquid significantly affect the injection pressure build-up profile, and porosity and gas flow rate substantially affect the time required to attain steady-state conditions. In addition, two correlations obtained from the statistical analysis can be used to predict the injection build-up pressure and the required time to reach steady state for different scenarios. This work will contribute to the clarification and understanding of the behavior of multiphase flow in the near-wellbore region.


2021 ◽  
pp. 1-25
Author(s):  
Yali Shao ◽  
Ramesh K. Agarwal ◽  
Xudong Wang ◽  
Baosheng Jin

Abstract In recent decades, increasing attention has been focused on accurate modeling of circulating fluidized bed (CFB) risers to provide valuable guidance to design, optimization and operation of reactors. Turbulence model plays an important role in accurate prediction of complex gas-solid flows. Recently developed Wray-Agarwal (WA) model is a one-equation turbulence model with the advantages of high computational efficiency and competitive accuracy with two-equation models. In this paper for the first time, Eulerian-Eulerian approach coupled with different turbulence models including WA model, standard κ-ε model and shear stress transport (SST) κ-ω model is employed to simulate two-phase flows of gas phase and solid phase in two CFB risers, in order to assess accuracy and efficiency of WA model compared to other well-known two-equation models. Predicted gas-solid flow dynamic characteristics including the gas-solid volume fraction distributions in radial and axial directions, pressure profiles and solid mass flux distributions are compared with data obtained from experiment in detail. The results demonstrate WA model is very promising for accurate and efficient simulation of gas-solid multiphase flows.


Author(s):  
K. A. Ibrahim ◽  
M. A. El-Kadi ◽  
Mofreh H. Hamed ◽  
Samy M. El-Behery

In this paper, a two-way coupling Eulerian-Lagrangian approach is presented for the simulation of gas-solid two-phase flow in 180° curved duct. In the present study, Reynolds averaged Navier-Stokes equations (RANS) and two turbulence models namely; standard k-ε model and RNG (Renormalization Group) based k-ε model are adopted. The effects of particle rotation and lift forces are included in the particle tracking model while the effect of inter-particle collisions is neglected. The present predictions are compared with published experimental data for single-phase flow and published particles trajectories. The comparisons show that the RNG based k-ε model predicts the flow behaviour better than the standard k-ε model. Furthermore, the particles trajectories are compared very well with published data. The effects of inlet gas velocity, bend geometry, loading ratio and solid properties on the flow behaviour are also discussed. The results show that the flow behaviour is greatly affected by the above parameters.


Author(s):  
Lei Zhao ◽  
Ting Wang

A pyroscrubber is a furnace used in the petroleum coke calcining industry to recover energy from the carbonaceous contents, including char dust and hydrocarbon volatiles of the exhaust gas from the calcination kiln. The combusted hot gases are used to generate steam and produce electricity, so it is important to optimize the pyroscrubber performance to produce high-grade combusted gases to generate steam but with minimal emissions. A previous study employed the locally-homogeneous flow (LHF) model to study rhe means to improve combustion efficiency and reduce emissions. In the LHF model, the inter-phase exchange rates of mass, momentum and energy are assumed to be infinitely fast, so the dispersed phase (char dust) can be simplified as the gas phase, and the complex two-phase flow is then treated as a single-phase flow. In this study, LHF model is replaced with a solid particle combustion model by incorporating both finite-rate heterogeneous and homogeneous combustion processes. Results reveal that the particle combustion model generates much higher local flame temperature (2200K) than in LHF model (1800K). All char particles are burned before or in the high-bay area. Total energy output of the case with particle combustion model is 92% of the LHF model. Furthermore, motivated by the potential energy saving from removing the air blower power supply, this study further investigates the possible benefit of running the pyroscrubber with the ventilation doors open. Three cases with different combinations of air injections and door opening have been studied. Results show that the gas flow is stably stratified with a large amount of the entrained cold air moving at the bottom of the chamber and the hot combusted gas moving through the top. With bottom doors completely open, sufficient air can be drawn into the pyroscrubber without the need of blowing air in, but the combustion gases will be overcooled making this practice unfavorable from the energy saving point of view.


Sign in / Sign up

Export Citation Format

Share Document