scholarly journals Groundwater Level Prediction based on Neural Networks: A case study in Linze, Northwestern China

2021 ◽  
Vol 266 ◽  
pp. 09005
Author(s):  
Hui Zhang ◽  
Jixuan Zhao ◽  
Chong Chen

Groundwater level is an important factor in evaluating groundwater resources. Due to numerous non-linear factors, establishing theoretical models is difficult.. Therefore, this paper proposesthe BP (Back Propagation) neural network and the Radial Basis Function (RBF) neural network. The study area is divided into two zones. The R2 (coefficient of determination) and RMSE (Root Mean Squared Error) are used to evaluate the performance. The BP neural network is used to predict groundwater level in the two zones with the R2of0.57 and 0.54, with the RMSE of 0.0804 meters and 0.1864 meters respectively. The RBF neural network is implemented with R2of 0.65 and 0.61, with RMSE of 0.0720 meters and 0.1519 meters, respectively. The results show the RBF neural network performs better than the BP neural network in the accuracy of predicting groundwater level. This study shows the feasibility and superiority of groundwater simulation using neural network.

2020 ◽  
Vol 39 (6) ◽  
pp. 8823-8830
Author(s):  
Jiafeng Li ◽  
Hui Hu ◽  
Xiang Li ◽  
Qian Jin ◽  
Tianhao Huang

Under the influence of COVID-19, the economic benefits of shale gas development are greatly affected. With the large-scale development and utilization of shale gas in China, it is increasingly important to assess the economic impact of shale gas development. Therefore, this paper proposes a method for predicting the production of shale gas reservoirs, and uses back propagation (BP) neural network to nonlinearly fit reservoir reconstruction data to obtain shale gas well production forecasting models. Experiments show that compared with the traditional BP neural network, the proposed method can effectively improve the accuracy and stability of the prediction. There is a nonlinear correlation between reservoir reconstruction data and gas well production, which does not apply to traditional linear prediction methods


2020 ◽  
Vol 63 (4) ◽  
pp. 1071-1077
Author(s):  
Chenyang Sun ◽  
Lusheng Chen ◽  
Yinian Li ◽  
Hao Yao ◽  
Nan Zhang ◽  
...  

HighlightsWe propose five spraying parameters according to the characteristics of pig carcasses in the spray-chilling process.A prediction model for pig carcass weight loss, based on a genetic algorithm back-propagation neural network, is proposed to reveal the relationship between weight loss and spraying parameters.To study the effects of various spraying parameters on weight loss, an automatic spray-chilling device was designed, which can modify up to five spraying parameters.Abstract. Because the weight loss of a pig carcass in the spray-chilling process is easily affected by the spraying frequency and duration, a prediction model for weight loss based on a genetic algorithm (GA) back-propagation (BP) neural network is proposed in this article. With three-way crossbred pig carcasses selected as the test materials, the duration and time interval of high-frequency spraying, the duration and time interval of low-frequency spraying, and the duration of a single spray were selected as inputs to the network model. The weight and threshold of the network were then optimized by the GA. The prediction model for pig carcass weight loss established by the GA BP neural network yielded a correlation coefficient of R = 0.99747 between the network output value of the test samples and the target value. Weight loss prediction by the model is feasible and allows better expression of the nonlinear relationship between weight loss and the main controlling factors. The results can be a reference for chilled meat production. Keywords: BP neural network, Genetic algorithm, Pig carcass, Predictive model, Weight loss


Information ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 36 ◽  
Author(s):  
Jian Lv ◽  
Miaomiao Zhu ◽  
Weijie Pan ◽  
Xiang Liu

To create alternative complex patterns, a novel design method is introduced in this study based on the error back propagation (BP) neural network user cognitive surrogate model of an interactive genetic algorithm with individual fuzzy interval fitness (IGA-BPFIF). First, the quantitative rules of aesthetic evaluation and the user’s hesitation are used to construct the Gaussian blur tool to form the individual’s fuzzy interval fitness. Then, the user’s cognitive surrogate model based on the BP neural network is constructed, and a new fitness estimation strategy is presented. By measuring the mean squared error, the surrogate model is well managed during the evolution of the population. According to the users’ demands and preferences, the features are extracted for the interactive evolutionary computation. The experiments show that IGA-BPFIF can effectively design innovative patterns matching users’ preferences and can contribute to the heritage of traditional national patterns.


2014 ◽  
Vol 543-547 ◽  
pp. 2084-2088 ◽  
Author(s):  
Run Biao Bao ◽  
Man Zhang

To reduce the prediction error rate of earthquake casualties, the paper proposed a prediction model with two steps: (1) screening of the earthquake casualties correlation factors; (2) improving the predictive veracity of general BP(Back Propagation) neural network model.By the analysis of 9 kinds of correlation factors, the paper established the MIV(Mean Impact Value) model based on BP neural network to screen the final correlation factors, and the paper got 6 main correlation factors according to the size of output weights of the factors. Finally, the paper verified the accuracy and practicability of the model through the validation of the model and the solving of prediction error of relevant factors hasn't been selected.


2014 ◽  
Vol 1044-1045 ◽  
pp. 1824-1827
Author(s):  
Yi Ti Tung ◽  
Tzu Yi Pai

In this study, the back-propagation neural network (BPNN) was used to predict the number of low-income households (NLIH) in Taiwan, taking the seasonally adjusted annualized rates (SAAR) for real gross domestic product (GDP) as input variables. The results indicated that the lowest mean absolute percentage error (MAPE), mean squared error (MSE), root mean squared error (RMSE), and highest correlation coefficient (R) for training and testing were 4.759 % versus 19.343 %, 24429972.268 versus 781839890.859, 4942.669 versus 27961.400, and 0.945 versus 0.838, respectively.


2013 ◽  
Vol 333-335 ◽  
pp. 2469-2474
Author(s):  
Fei Guo ◽  
Xiao Luo

In order to meet the requirements of real-time and embedded of industrial field, a reconfigurable Back-Propagation neural network based on FPGA has been implemented on Xilinx's Spartan-3E (XC3S250E) chip which has 250000 gate. First the optimal network structure and weights were gotten by a variable structure of BP neural network algorithm. Then an improved hardware approaching method of excitation function was put forward, and the maximum error was 1.58% by simulation and comparative analysis on the error. Finally hardware co-imitation and timing simulation was token based on a reasonable choice of data accuracy, and then the hardware BP neural network algorithm was been downloaded and implemented on FPGA. This method has better accuracy and speed, it is an effective method of BP neural network modeling based on hardware, and lays the foundation for the hardware realization of other neural network and embedded image processing.


2014 ◽  
Vol 926-930 ◽  
pp. 610-614 ◽  
Author(s):  
Jing Long Chen ◽  
Pei Feng Cheng ◽  
Chuan Jun Yin

Soil samples are taken from two experimental roads in Heilongjiang province for the test. Then a prediction of shear strength is carried out, basing on a three-layer BP (back propagation) network in Matlab, the hidden layer, output layer and training function of which adopt non-linear transfer function tansig, linear transfer function purelin, and trainbfg function respectively. It is found workable to predict factors influencing shearing strength using BP neural network with given soil properties. Prediction results of cohesion strength for clay show a better performance than those for sandy soil, while results of friction angle for sandy soil are better than those for clay. It is indicated that BP neural network does a better work in predicting the friction angle than that of cohesion.


Ocean Science ◽  
2019 ◽  
Vol 15 (2) ◽  
pp. 349-360 ◽  
Author(s):  
Zhiyuan Wu ◽  
Changbo Jiang ◽  
Mack Conde ◽  
Bin Deng ◽  
Jie Chen

Abstract. Sea surface temperature (SST) is the major factor that affects the ocean–atmosphere interaction, and in turn the accurate prediction of SST is the key to ocean dynamic prediction. In this paper, an SST-predicting method based on empirical mode decomposition (EMD) algorithms and back-propagation neural network (BPNN) is proposed. Two different EMD algorithms have been applied extensively for analyzing time-series SST data and some nonlinear stochastic signals. The ensemble empirical mode decomposition (EEMD) algorithm and complementary ensemble empirical mode decomposition (CEEMD) algorithm are two improved algorithms of EMD, which can effectively handle the mode-mixing problem and decompose the original data into more stationary signals with different frequencies. Each intrinsic mode function (IMF) has been taken as input data to the back-propagation neural network model. The final predicted SST data are obtained by aggregating the predicted data of individual series of IMFs (IMFi). A case study of the monthly mean SST anomaly (SSTA) in the northeastern region of the North Pacific shows that the proposed hybrid CEEMD-BPNN model is much more accurate than the hybrid EEMD-BPNN model, and the prediction accuracy based on a BP neural network is improved by the CEEMD method. Statistical analysis of the case study demonstrates that applying the proposed hybrid CEEMD-BPNN model is effective for the SST prediction. Highlights include the following: Highlights. An SST-predicting method based on the hybrid EMD algorithms and BP neural network method is proposed in this paper. SST prediction results based on the hybrid EEMD-BPNN and CEEMD-BPNN models are compared and discussed. A case study of SST in the North Pacific shows that the proposed hybrid CEEMD-BPNN model can effectively predict the time-series SST.


Author(s):  
Sandeep Samantaray ◽  
Abinash Sahoo

Here, an endeavor has been made to predict the correspondence between rainfall and runoff and modeling are demonstrated using Feed Forward Back Propagation Neural Network (FFBPNN), Back Propagation Neural Network (BPNN), and Cascade Forward Back Propagation Neural Network (CFBPNN), for predicting runoff. Various indicators like mean square error (MSE), Root Mean Square Error (RMSE), and coefficient of determination (R2) for training and testing phase are used to appraise performance of model. BPNN performs paramount among three networks having model architecture 4-5-1 utilizing Log-sig transfer function, having R2 for training and testing is correspondingly 96.43 and 95.98. Similarly for FFBPNN, with Tan-sig function preeminent model architecture is seen to be 4-5-1 which possess MSE training and testing value 0.000483, 0.001025, RMSE training and testing value 0.02316, 0.03085 and R2 for training and testing as 0.9925, 0.9611, respectively. But for FFBPNN the value of R2 in training and testing is 0.8765 0.8976. Outcomes on the whole recommend that assessment of runoff is suitable to BPNN as contrasted to CFBPNN and FFBPNN. This consequence helps to plan, arrange and manage hydraulic structures of watershed.


2013 ◽  
Vol 433-435 ◽  
pp. 685-690
Author(s):  
Xiang Yang Liu ◽  
Hui Song Wan ◽  
Yuan Yuan Zhang ◽  
Shu Ming Jiang

The Back Propagation (BP) neural network was used for the construction of the hailstone classifier. Firstly, the database of the radar image feature was constructed. Through the image processing, the color, texture, shape and other dimensional features should be extracted and saved as the characteristic database to provide data support for the follow-up work. Secondly, Through the BP neural network, a machine for hail classifications can be built to achieve the hail samples auto-classification.


Sign in / Sign up

Export Citation Format

Share Document