scholarly journals The switching control strategy of redundant electromechanical servo system based on the compound sliding mode control

2021 ◽  
Vol 268 ◽  
pp. 01069
Author(s):  
Zonglun Li ◽  
Zhiyuan Yu ◽  
Menglong Jiang

Aiming to resolve the limitations of robustness and stability in switching working modes of dual redundancy electric servo system, a control strategy based on sliding mode control is suggested. By analyzing the electromechanical servo system’s basic structure and working theory, a mathematical model is created to enable the design of new control functions. Taking into account the influence of the internal parameter perturbation of the electromechanical servo system during the switching between working modes, the sliding mode control is used to enhance system robustness, and the method of combining the latest saturation function and the exponential reaching law is used to minimize the system chattering. The simulation results and analysis show that the control strategy can effectively improve the robustness and control accuracy of the system.

2011 ◽  
Vol 317-319 ◽  
pp. 1490-1494 ◽  
Author(s):  
Bao Quan Jin ◽  
Yan Kun Wang ◽  
Ya Li Ma

The parameters uncertainty and external disturbance play a negative role to improve electro-hydraulic position servo system performance. The valve controlled cylinder system model is established, using the traditional PID control strategy and reaching law control strategy for simulating the system, respectively, the two methods have similar control effects in the ideal model, but considering the external disturbances, the index approaches sliding mode control law has better response speed and stability. Research shown that sliding mode control algorithm has an important role for improving the performance of hydraulic servo position control system.


2015 ◽  
Vol 741 ◽  
pp. 655-658 ◽  
Author(s):  
Cai Yun Dong ◽  
Hai Jun Wang ◽  
Wen Yong Cui

The sliding mode control approach based on double power exponential reaching law is proposed for the hydraulic servo system. With the example of the hydraulic servo system in the lab, the mathematic model is established and the new controller is presented and simulated. Simulation results show that: the proposed approach has high track precision, fast response, small chattering and ensures dynamic quality of the system.


2020 ◽  
Vol 66 (12) ◽  
pp. 697-708
Author(s):  
Wending Li ◽  
Guanglin Shi ◽  
Chun Zhao ◽  
Hongyu Liu ◽  
Junyong Fu

Aiming at the interference problem and the difficulty of model parameter determination caused by the nonlinearity of the valve-controlled hydraulic cylinder position servo system, this study proposes a radial basis function (RBF) neural network sliding mode control strategy based on a backstepping strategy for the electro-hydraulic actuator. First, the non-linear system model of the third-order position electro-hydraulic control servo system is established on the basis of the principle analysis. Second, the model function RBF adaptive law and backstepping control law are designed according to Lyapunov’s stability theorem to solve the problem of external load disturbance and modelling uncertainty, combined with sliding mode control strategy and virtual control law. Finally, simulation and experiment on MATLAB Simulink and semi-physical experimental platform are accomplished to show the effectiveness of the proposed method. Moreover, results show that the designed controller has high tracking accuracy to the given signal.


2013 ◽  
Vol 273 ◽  
pp. 280-285 ◽  
Author(s):  
Hong Pei Han ◽  
Wu Wang ◽  
Zheng Min Bai

Permanent Magnet Linear Synchronous Motor (P MLSM was hard to control with traditional control strategy for parameters variation and external load disturbance, a global robust terminal sliding mode control (GRTSMC) was designed for PMLSM servo system, the sliding mode surface function was designed, the robust sliding mode control law was deduced and the stability was proved by Lyapunov theory. With the mathematical models of PMLSM, the simulation was taken with traditional PID control, SMC control and GRTSMC control proposed in this paper, the robust performance be found with GRTSMC control when motor parameters and external load changed, the efficiency and advantages of this robust control strategy was successfully demonstrated.


2011 ◽  
Vol 219-220 ◽  
pp. 556-559
Author(s):  
Shu Fang Wang ◽  
Jian Cheng Zhang ◽  
Hong Hong Guo

On the basis of LuGer friction model, an integrated sliding-mode control strategy is proposed to deal with servo system nonlinear and uncertain factors effectively. The control strategy includes two parts. One is nominal model without considering disturb and uncertain, the other is real model including disturb and uncertain. To one part, choose reasonable sliding surface and design controller law. To another part, PTSC algorithm and NNC algorithm combines together to optimize RBF neural network in order to acquire upper bound of uncertain. Simulation and experiment results show that proposed control strategy better servo system performance.


2021 ◽  
Vol 54 (3-4) ◽  
pp. 360-373
Author(s):  
Hong Wang ◽  
Mingqin Zhang ◽  
Ruijun Zhang ◽  
Lixin Liu

In order to effectively suppress horizontal vibration of the ultra-high-speed elevator car system. Firstly, considering the nonlinearity of guide shoe, parameter uncertainties, and uncertain external disturbances of the elevator car system, a more practical active control model for horizontal vibration of the 4-DOF ultra-high-speed elevator car system is constructed and the rationality of the established model is verified by real elevator experiment. Secondly, a predictive sliding mode controller based on adaptive fuzzy (PSMC-AF) is proposed to reduce the horizontal vibration of the car system, the predictive sliding mode control law is achieved by optimizing the predictive sliding mode performance index. Simultaneously, in order to decrease the influence of uncertainty of the car system, a fuzzy logic system (FLS) is designed to approximate the compound uncertain disturbance term (CUDT) on-line. Furthermore, the continuous smooth hyperbolic tangent function (HTF) is introduced into the sliding mode switching term to compensate the fuzzy approximation error. The adaptive laws are designed to estimate the error gain and slope parameter, so as to increase the robustness of the system. Finally, numerical simulations are conducted on some representative guide rail excitations and the results are compared to the existing solution and passive system. The analysis has confirmed the effectiveness and robustness of the proposed control method.


Sign in / Sign up

Export Citation Format

Share Document