scholarly journals The study of power transformer differential protection’s operation in the internal fault conditions

2021 ◽  
Vol 288 ◽  
pp. 01096
Author(s):  
Ilya Litvinov ◽  
Aleksandra Naumova ◽  
Vasiliy Titov ◽  
Andrey Trofimov ◽  
Elena Gracheva

Special attention is paid to high-speed relay protections’ operation in transient modes due to a number of major failure events that have occurred over the past 10 years in the power system of the Russian Federation. Operation of power transformer’s differential protection in case of internal short circuit is studied in this research. False blocking of protection is possible in such mode due to saturation of current transformers. A value of blocking time may exceed the maximum permissible short-circuit disconnection time under conditions of maintaining the dynamic stability of the power system. Primary and secondary currents in transient modes are obtained by simulation of short circuits. Windings of the modeled current transformers are connected in a star to a null wire. RMS values are calculated using a mathematical model of the Fourier filter. The current transformers were checked according to the methods declared in PNST 283-2018 and GOST R 58669-2019. The analysis carried out in this work allows to estimate possibility of long-term blocking of the differential protection of a power transformer in case of internal short circuit, especially in case of significant value of time constants.

This paper presents a new innovative algorithm for Numerical Differential Relay design of transformer. Fault information is critical for operating and maintaining power networks. This algorithm provides accurate performance for transformer by which is independent of system conditions such as: External fault, Inrush current, CT saturation. Locating transformer faults quickly and accurately is very important for economy, safety and reliability point of view. Both fault-detection and protection indices are derived by using Numerical Differential Relay algorithm design of transformer. The embedded based differential and operating current measurement device is called numerical differential relay is among the most important development in the field of instantaneous fault operation. Numerical relay provides measurement of differential current and operating current at power transformer above 5MVA in substation. Simulation studies are carried out using MATLAB Software show that the proposed scheme provides a high accuracy and fast relay response in internal fault conditions. Current transformers form an important part of protective systems. Ideal Current Transformers (CTs) are expected to reflect the primary current faithfully on the secondary side. Under conditions the CT saturates, and hence it cannot reproduce the primary current faithfully. This paper deals with simulation methods for determining CT performance under different factor. A Simulink model has been developed to observe CT response under steady state w.r.t Burden, Turns ratio, Asymmetrical current, Hysteresis conditions. Thus, it is now possible to evaluate the CT performance under these factors


2014 ◽  
Vol 492 ◽  
pp. 426-430
Author(s):  
Rachid Bouderbala ◽  
Hamid Bentarzi

A differential relay that is very sensitive relay operating even at its limits may be used for protecting a power transformer. However, this characteristic may lead to unnecessary tripping due to transient currents. In order to avoid this unnecessary tripping, estimated harmonics of these currents may be required which need great computation efforts. In this paper, a new frame work is proposed using PC interfaced with a data acquisition card AD622, which acquires real-time signals of the currents, process them numerically in the computer and outputs tripping signal to the circuit breaker. All algorithms of differential protection function and blocking techniques have been implemented using the Simulink/Matlab. To validate the present work, the performance of developed relay is tested by signals generated by Simulink/MATLAB simulator under different conditions. The test results show that this proposed scheme provides good discrimination between the transient currents and the internal fault currents.


Author(s):  
Stanislav Kuzhekov ◽  
◽  
Andrey Degtyarev ◽  
Nikolay Doni ◽  
Aleksey Shurupov ◽  
...  

In connection with cases of incorrect operation of high-speed relay protection devices (RPD) in case of short circuits outside their range, the issue of replacing current transformers (CT) of class P with more ad-vanced current converters is relevant. The article shows that the decision to replace existing class P CTs with CTs with a non-magnetic gap should be made taking into account the probability of saturation of the magnetic cores of the latter in a transient short-circuit mode, as well as an increase in their dimensions compared to class P CTs. The issue of using optoelectronic current converters should be resolved after the latter are put into mass production, taking into account the difficulty of integrating the latter with the RPDs implemented using an Electromechanical base. In many cases, the correct functioning of high-speed RPDs without replacing existing CTs of class P can provide the following measures: the use of algorithms that increase the stability of the oper-ation of high-speed RPDs when the CT is saturated; taking into account in the calculations of the settings the rectangular characteristic of the CT magnetization in transient modes and the permissible deceleration of pro-tections under the condition of the dynamic stability of electric power systems; refusal to use CT connection groups (physical sum of currents, delta and star).


2021 ◽  
Vol 65 (1) ◽  
pp. 53-61
Author(s):  
Reza Taghipour Gorji ◽  
Seyyed Mehdi Hosseini ◽  
Ali Akbar Abdoos ◽  
Ali Ebadi

The Current Transformers (CT) saturation may cause the protective relays mal-operation either non-recognition of internal fault or undesirable trip under external fault conditions. Therefore, compensation of CT saturation is very important for correct performance of protective schemes. Compensation of CT saturation by combination of signal processing methods and intelligent algorithms is a suitable solution to solve the problem. It decreases the probability of mal-operation and increases the reliability of the power system. In this paper, Support Vector Regression (SVR) method is employed to compensate the distorted secondary current due to CT saturation. In SVR method, despite the other methods such as MLPand ANFIS, instead of minimizing the model error, the operational risk error is considered as target function. In this method, by using Kernel tricks, a smart RBF neural network is obtained, so that all operational procedures will be optimized automatically. In this paper, an intelligent method based on Particle Swarm Optimization (PSO) algorithm is presented to determine the optimal values of SVR parameters. Due to the stability and robustness of this method in presence of noise and sudden changes in current, this method has a high accuracy. In addition, a sample power system is simulated using PSCAD software. Afterwards, current signals are extracted and fed to PSO-SVR algorithm, which is implemented in MATLAB environment. The obtained results show the preference of the proposed method in aspect of estimation accuracy as compared to some presented methods in the field of CT saturation detection and correction.


Author(s):  
Fadhel Putra Winarta ◽  
Yoli Andi Rozzi

The study of electric power flow analysis (Load Flow) is intended to obtain information about the flow of power or voltage in an electric power system network. This information is needed to evaluate the performance of the power system. Electrical power flow problems include calculating the flow and system voltage at certain terminals or buses. The benefits of this power flow study are to find out the voltage at each node in the system, to find out whether all the equipment meets the specified limits to deliver the desired power, and to obtain the original conditions in the new system planning. This study is divided into two: the analysis of data when the conditions have not been added wind turbine and after the addition of 300 kW wind turbine with software power station ETAP software 12.6.0 and the Newton-Raphson method will be used in analyzing the power flow of the electric power system. Based on the results of the tests, it is found that the overall value of losses for power flow before the addition of DG is 0.031 MW and 0.037 Mvar, for the voltage drop with the lowest percentage, namely on bus 10 with a percentage of 96.45 for the 0.4 kV system and the 20 kV system on bus 19 with a percentage of 99.03, the largest% PF load was in lump 1 with 98.64 and the smallest% PF was in lump7 with a value of 84.92. The short circuit data value on the 20 kV bus system at Andalas University before the addition of DG with 3-phase disturbances averaged 13.354 A, 1-phase disturbances averaged 3.521 A, 2-phase disturbances averaged 11.719 A and 2 ground phases of 12.842 A Whereas for the value of power flow after the addition of DG in the form of the wind turbine of 300 kW the overall value of losses is 0.032 MW and 0.042 MvarAR, for the voltage drop with the percentage for voltage drop with the lowest percentage is bus 10 with a percentage of 96.63 for system 0, 4 kV and a 20 kV system on bus 14 with a percentage of 98.1, the largest% PF load is in lump 1 with 98.64 and the smallest% PF is in lump7 with a value of 84.92. The short circuit data value on the 20 kV bus system at Andalas University after the addition of DG with 3 phase disturbances has an average value of 13.354 A, 1 phase disturbance averages 3.523 A, 2 phase disturbances average 11.737 A and 2 phases ground is 12.059 A For the source in this system, after the addition of DG, there was a change in the% PF of the PLN grid, namely 79.53 and the wind turbine -83%.


Sign in / Sign up

Export Citation Format

Share Document