scholarly journals Development of benchmark scenarios for sector coupling in the Italian national energy system for 100% RES supply to power and mobility

2021 ◽  
Vol 312 ◽  
pp. 01003
Author(s):  
Paolo Colbertaldo ◽  
Giulio Guandalini ◽  
Stefano Campanari

The urgence of decarbonization has pushed many countries to set ambitious net-zero CO2 emission targets by 2050. This requires a substantial transformation of energy sources, conversion methods, and final uses. This work investigates the structure of the future Italian energy system – in terms of power generation capacity, energy storage, mobility fuel shares – and assesses benchmark scenarios able to reach a fully decarbonized supply in power and transport sectors, considering their long-term evolution. The analysis adopts a multi-node multi-vector model that simulates the year-long energy system behaviour with hourly time resolution and optimizes sizing (installed capacities) and operation (energy flows). The model considers power generation from different sources, electric consumption, and mobility demand for energy vectors, focusing on electricity and hydrogen. The required installed capacities of RES power plants and energy storage systems appear to be extremely high (at least 10x today’s solar PV or more), but in general positively influenced by sector integration strategies and energy vector multiplicity. Energy storage and flexibility solutions are essential, combining battery storage, Power-to-Hydrogen, Power-to-Power, smart charging, and vehicle-to-grid. If capacity installation is limited (e.g., due to land availability), the need to satisfy consumption yields significant import requirements, which also depend upon the mobility mix and the decarbonization targets.

2018 ◽  
Vol 8 (8) ◽  
pp. 1221 ◽  
Author(s):  
Abdelkader Rouibah ◽  
Djamel Benazzouz ◽  
Rahmani Kouider ◽  
Awf Al-Kassir ◽  
Justo García-Sanz-Calcedo ◽  
...  

The increase of solar energy production has become a solution to meet the demand of electricity and reduce the greenhouse effect worldwide. This paper aims to determine the performance and viability of direct normal irradiation of three solar tower power plants in Algeria, to be installed in the highlands and the Sahara (Béchar, El Oued, and Djelfa regions). The performance of the plants was obtained through a system advisor model simulator. It used real data gathered from appropriate meteorological files. A relationship between the solar multiple (SM), power generation, and thermal energy storage (TES) hours was observed. The results showed that the optimal heliostat field corresponds to 1.8 SM and 2 TES hours in Béchar, 1.2 SM and 2 TES hours for El Oued, and 1.5 SM and 4 TES hours for Djelfa. This study shows that there is an interesting relationship between the solar multiple, power generation, and storage capacity.


2020 ◽  
Author(s):  
Joshua D Rhodes ◽  
Aditya Choukulkar ◽  
Brianna Cote ◽  
Sarah A McKee ◽  
Christopher T M Clack

Abstract In the present paper, we assessed the potential for local wind, solar PV, and energy storage to provide baseload (constant, uninterrupted) power in every county of the contiguous United States. The amount of available capacity between 2020 and 2050 was determined via a least-cost optimization model that took into account changing costs of constituent technologies and local meteorological conditions. We found that, by 2050, the potential exists for about 6.8 TW of renewable baseload power at an average cost of approximately $50 / MWh, which is competitive with current wholesale market rates for electricity. The optimal technology configurations constructed always resulted in over two hours of emergency energy reserves, with the amount increasing as the price of energy storage falls. We also found that, given current price decline trajectories, the model has a tendency to select more solar capacity than wind over time. A second part of the study performed three million simulations followed by a regression analysis to generate an online map-based tool that allows users to change input costs assumptions and compute the cost of renewable baseload electricity in every contiguous US county.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2206 ◽  
Author(s):  
Michael Child ◽  
Alexander Nordling ◽  
Christian Breyer

A 100% renewable energy (RE) scenario featuring high participation in vehicle-to-grid (V2G) services was developed for the Åland islands for 2030 using the EnergyPLAN modelling tool. Hourly data was analysed to determine the roles of various energy storage solutions, notably V2G connections that extended into electric boat batteries. Two weeks of interest (max/min RE) generation were studied in detail to determine the roles of energy storage solutions. Participation in V2G connections facilitated high shares of variable RE on a daily and weekly basis. In a Sustainable Mobility scenario, high participation in V2G (2750 MWhe) resulted in less gas storage (1200 MWhth), electrolyser capacity (6.1 MWe), methanation capacity (3.9 MWhgas), and offshore wind power capacity (55 MWe) than other scenarios that featured lower V2G participation. Consequently, total annualised costs were lower (225 M€/a). The influence of V2G connections on seasonal storage is an interesting result for a relatively cold, northern geographic area. A key point is that stored electricity need not only be considered as storage for future use by the grid, but V2G batteries can provide a buffer between generation of intermittent RE and its end-use. Direct consumption of intermittent RE further reduces the need for storage and generation capacities.


2020 ◽  
Vol 10 (2) ◽  
pp. 25
Author(s):  
Omar S. Alzaid ◽  
Basharat Salim ◽  
Jamal Orfi ◽  
Salah Khan ◽  
Hassan Alshehri

Solar and wind energy systems are attractive hybrid renewable energy systems suitable for various applications and most commonly for power generation. Compared to standalone wind and solar devices, hybrid systems have several advantages, including requiring lesser or no storage devices, being more reliable, damping the daily and seasonal variations and ensuring constant energy flows. This work aims to conduct a feasibility study and a performance analysis of a hybrid wind and solar photovoltaic (PV) power system in selected regions in the Kingdom of Saudi Arabia (KSA). A detailed review on the potential of PV, wind energy and hybrid energy systems in KSA, to reason out the potential areas of study, has identified two sites to be selected to carry out the investigation. A small size power system driven by solar and wind energy has been modeled and simulated for a year period in the selected locations. Various configuration schemes of integrated solar and wind with storage devices for such a small capacity system have been proposed and their respective performances have been evaluated. Techno-economic aspects have been included. The simulation results indicated that the developed model shows a promising future of implementing the renewable energy system in the eastern and southern regions of the Kingdom. 


2021 ◽  
Vol 264 ◽  
pp. 04057
Author(s):  
Boboraim Urishev ◽  
Muradilla Mukhammadiev ◽  
Abdurauf Abduaziz uulu ◽  
Hojiakbar Murodov

Information about the problems arising from the uneven production and consumption of energy in power systems, including in the power system of the Republic of Uzbekistan, is given on the example of a daily electrical load schedule. It is noted that to successfully solve these problems, energy is accumulated in the hours of minimum consumption so that it can be used in peak hours with high consumption, and for this purpose, pumped storage power plants are used. A diagram of hydraulic energy storage is given at large pumping stations used to accumulate water in the upper reservoir in hours of minimum loads, and the accumulated volume of water is directed to generate energy, which can be used by pumping stations to supply additional water to its consumers, replenishing its losses in hours of hydraulic energy storage. The method of selection and optimization of the main parameters of this complex, based on minimizing fuel consumption in power plants while limiting the amount of accumulated energy based on the capabilities of water and energy resources of pumping stations, is presented. The calculations using the example of the Syrdarya thermal power plant show that with the integration of five nearby pumping stations into the process of energy storage and generation, significant cost savings are achieved, and the daily load schedule is significantly leveled.


2021 ◽  
pp. 219-234
Author(s):  
Maciej Raczyński ◽  
Artur Wyrwa ◽  
Marcin Pluta ◽  
Wojciech Suwała

AbstractThis chapter examines the role of centralized district heating (DH) systems in context of energy system flexibility and decarbonization. The analysis is performed by applying the model TIMES-Heat-EU. Capacity expansion and operation of the district heating generation units is mainly driven by the evolution of the district heating demand, which varies between the REFLEX scenarios. In all scenarios fuel and technology switches toward bioenergy and natural gas leading to CO2 emission reduction. Since the total amount of energy produced (both heat and electricity) is the highest in the High-RES centralized scenario, the corresponding CO2 emissions for district heating are the highest as well. The CO2 emissions can be reduced by ⁓60% in 2050 compared to 2015. Furthermore, the role of thermal energy storage and power-to-heat technologies is examined.


2021 ◽  
Author(s):  
Bipul Krishna Saha ◽  
Basab Chakraborty ◽  
Rohan Dutta

Abstract Industrial low-grade waste heat is lost, wasted and deposited in the atmosphere and is not put to any practical use. Different technologies are available to enable waste heat recovery, which can enhance system energy efficiency and reduce total energy consumption. Power plants are energy-intensive plants with low-grade waste heat. In the case of such plants, recovery of low-grade waste heat is gaining considerable interest. However, in such plants, power generation often varies based on market demand. Such variations may adversely influence any recovery system's performance and the economy, including the Organic Rankine Cycle (ORC). ORC technologies coupled with Cryogenic Energy Storage (CES) may be used for power generation by utilizing the waste heat from such power plants. The heat of compression in a CES may be stored in thermal energy storage systems and utilized in ORC or Regenerative ORC (RORC) for power generation during the system's discharge cycle. This may compensate for the variation of the waste heat from the power plant, and thereby, the ORC system may always work under-designed capacity. This paper presents the thermo-economic analysis of such an ORC system. In the analysis, a steady-state simulation of the ORC system has been developed in a commercial process simulator after validating the results with experimental data for a typical coke-oven plant. Forty-nine different working fluids were evaluated for power generation parameters, first law efficiencies, purchase equipment cost, and fixed investment payback period to identify the best working fluid.


Sign in / Sign up

Export Citation Format

Share Document