scholarly journals What We Can Learn from Vernacular House and COVID-19 Infection? A Review of Mbaru Niang, Flores, Indonesia

2021 ◽  
Vol 317 ◽  
pp. 04017
Author(s):  
Jeanny Laurens Pinassang ◽  
Bangun I.R. Harsritanto ◽  
Dany Perwita Sari

The COVID-19 pandemic has shown that the current ventilation design, especially in residential buildings, may not provide healthy air exchange. Since current buildings in tropical climate only focused on cooling, its have become sites of rapid COVID-19 transmission. In order to avoid indoor SARS-Cov-2 transmission, some studies recommended an increase in air supply with a higher air exchange rate and to reduce the usage of the air conditioner. Flores has been designated one of the top Indonesian tourism destinations. However, access to transportation is still tricky. Analysis of local materials, culture, and weather can reduce the building cost and preserved local value to become the area's identity. Vernacular housing in Indonesia has adapted well to climatic conditions in different locations by using natural ventilation that ensures thermal comfort. We propose a ventilation design with natural ventilation from Mbaru Niang's traditional house. It was found that raised floor, verandah, and sun shading can reduce the hot temperature from solar radiation and hot wind from the sea breeze. This modern building concept can become a practical, healthy, and environmentally friendly solution for building in Flores, Indonesia. Introduction

2020 ◽  
Vol 41 (6) ◽  
pp. 694-708 ◽  
Author(s):  
Wei Xie ◽  
Yuesheng Fan ◽  
Xin Zhang ◽  
Guoji Tian ◽  
Pengfei Si

Experiments and theoretical analyses are conducted in a residential building in Changzhou to study indoor PM2.5 concentrations by establishing a combined parameter model. An alternative method for predicting the particle deposition rate and penetration coefficient is proposed, and its accuracy is tested and verified by experiments using time-dependent concentrations and air exchange rate measurements. The predicted PM2.5 penetration coefficient increased from 0.70 to 0.88 when the air exchange rates were varied from 0.2 h−1 to 0.5 h−1. In addition, outdoor sources of PM2.5 dominantly contributed approximately 90% to 98% to the indoor concentrations for both mechanically and naturally ventilated structures. Finally, a mathematical model for predicting the indoor concentration is presented using a mass balance equation, which estimates the parameter values in the building. The indoor PM2.5 concentrations ranged from 40 to 46 µg/m3 by using a fresh air system with 82% filtration efficiency, while those by using open windows for natural ventilation ranged from 105 to 118 µg/m3 when the outdoor PM2.5 concentration ranged from 115 to 137 µg/m3. The results of this study can be used to estimate the indoor particle level. Practical application: By applying the ventilation criteria for acceptable indoor air quality in ASHRAE Standard 62.1, the indoor PM2.5 monitoring results show serious pollution in dwellings in 2018. More dwellings are expected to maintain a clean indoor environment in the future. Thus, it is crucial to consider the indoor PM2.5 pollution risk in the building design to prevent the possible consequences of unsafe high indoor concentrations. The use of this prediction model, as discussed in this article, will provide further information on the influence of the particle deposition rate ( K) and penetration coefficient ( P) on indoor PM2.5 concentrations.


2011 ◽  
Vol 374-377 ◽  
pp. 430-435
Author(s):  
Wei Wei Du ◽  
Cui Cui Qin ◽  
Li Hua Zhao

Reasonable determination of indoor ventilation rates are the main content of residential ventilation designs, and can save consumption by air conditioners. Firstly, the energy saving potential of ventilation cooling technology in Guangzhou is analyzed in this paper. The cooling load of a residential building in Guangzhou with different air exchange rates is simulated by the DeST-h after indoor heating quantity of different rooms is set. The energy saving rate is analyzed, the functional relation between energy saving rate of ventilation and air exchange rate is obtained using the linear-regression analysis method. After a comprehensive consideration of various factors, including variation of energy efficiency, room volume, air outlet size, and that the maximum air exchange rates of different rooms are fixed.


2018 ◽  
Vol 49 ◽  
pp. 00025 ◽  
Author(s):  
Tomasz Gaczoł

In the following article the author proposes the solution for a properly functioning natural ventilation system based on the use of supply and exhaust ducts, i.e. by designing a natural balanced ventilation system. The paper is devoted to test results of air flow through natural ventilation supply-exhaust ducts in the rooms located on the lower floor of the building. The simulations conducted in ANSYS Fluent software relate to such issues as: pressure system inside the room and in the exhaust duct, distribution of air temperatures in the room, vector direction of airflow through supplyexhaust ducts and in the analysed room. Three types of solutions were selected for the tests: air inflow into the room through the air intake located at the basement level, air inflow through the window ventilator (although no longer used, this solution can be found in many existing residential buildings) and the natural ventilation system supported with the so-called “solar chimney”. All simulations were conducted with an outdoor temperature of +3 degrees C. The indoor temperature is + 20 degrees C, considered to be the minimum thermal comfort level. In the era of common building sealing, the presented ventilation system may be a good solution that guarantees proper functioning of natural ventilation. In all cases presented, it meets the normative regulations and requirements for the ventilation air stream and the air exchange rate in the room. The paper (first part) describes test results concerning the room located on the lower floor of the building, i.e. with a short supply duct and a 12-meter long exhaust duct.


2018 ◽  
Vol 63 (1) ◽  
pp. 39-43 ◽  
Author(s):  
Miroslava Kmecová ◽  
Michal Krajčík ◽  
Zuzana Straková

The aim of this study was to design a fire ventilation system with impulse jet fans for an underground car park. With respect to the number of parameters affecting the spread of smoke that need to be considered, there is a good chance of miscalculations if only conventional plain calculations are used in the design process. To avoid mistakes, visualize the fluid flow, and to compare the design variants it is practical to use computational fluid dynamics (CFD). In this study, CFD simulations were used to compare alternative designs of a fire ventilation system. In one alternative the exhaust shafts were located in both parts of the car park and the jet fans were directed to the corresponding shafts. The air exchange rate was 10-times per hour. In another alternative both exhaust shafts were located on one side opposite to the main air supply, and the air exchange rate was 15-times per hour. The results showed preference of the second alternative, when the smoke was completely exhausted and the visibility improved substantially, whereas in the first alternative the car park was not sufficiently ventilated even 600 seconds after the fire had been put out. The results emphasize that proper location of elements of the ventilation system is crucial to attain high efficiency of fire ventilation.


2012 ◽  
Vol 260-261 ◽  
pp. 738-743
Author(s):  
Ze Li Que ◽  
Ling Fei Ma ◽  
Fei Bin Wang ◽  
Takeshi Furuno

The formaldehyde emission from particleboard using different method was investigated in this study. It was found that there is a good correlation between different air exchange rates as they relate to the same product-loading ratio in the large chamber. There was also an indication of a generic correlation between the large chamber and the two-hour desiccator test with a single product designated loading ratio, air exchange rate, and climatic conditions.


2018 ◽  
Vol 49 ◽  
pp. 00036
Author(s):  
Sławomir Grabarczyk

In greenhouses, in order to maintain proper indoor air temperature, during the period of high values of solar radiation intensity, shading treatments using thermal screens and ventilation are applied. The research was carried out in a mono-span greenhouse in order to determine the effectiveness of natural ventilation. The object of analysis is a greenhouse with a thermal screen installed inside. The tests were carried out during the summer days. The effect of the research was to determine the ventilation air flow through the vents of the greenhouse on the basis of measurements and calculation analyzes. The dependence of the air flow on the windward and leeward side was determined from the wind speed and the temperature difference between the indoor and outdoor air. On the basis of calculations made from observation during shading of the cultivated area and with open ventilators, the coefficients of air exchange per unit floor area of the greenhouse were determined. It was established that at a wind speed exceeding 0.8 m/s, the air exchange rate in the tested greenhouse exceeds the value recommended by the American Society of Agricultural Engineers of 0.04 m3/(s.m2).


2018 ◽  
Vol 8 (1) ◽  
pp. 13-18
Author(s):  
I. L. Cîrstolovean ◽  
M. Horneț ◽  
Ana Diana Ancas ◽  
M. Profire

Abstract The goals of this paper are to estimate some parameters – indoor temperature and ventilation rate - necessary to determine the heat load demand for ventilation in the amphitheatre named ‘A TALPOSI’-Faculty of Buildings Engineering- with a number of at the most 120 occupants. The study presented in this paper is made when in the amphitheatre it is necessary to assure a comfortable temperature by a permanent functioning of the heating system. The number of air exchanges necessary in the amphitheatre in the natural ventilation process, more exactly, to assure a minimum air exchanges, is imposed by the requirements for the assurance of physiologic comfort in the amphitheatre for the time interval when it is occupied by students. The inner air debit should cover the harmful emissions in the amphitheatre. By the help of these calculated (measured) parameters we have calculated the heat load for ventilation. In the end, with the data obtained from calculations and measurements we find ourselves in the situation of establishing the size of the heat exchanger corresponding to the room, to heat the fresh air taken from outside and send it inside the amphitheatre. The measurements are made with the TESTO apparatus of the faculty. The minimum requirements to assure the thermal comfort are: to achieve a minimum internal temperature θi (t) higher than (or equal to) the normal indoor temperature associated to this space and to assure the air quality, the air exchange rate. The authors want to highlight by this study the necessity and importance of the control on the number of air exchanges in rooms with a high number of occupants and overall, the control of the fresh air debits. The fact that the focus is more and more on heat loss cuts in rooms by tightening closing elements gives birth to the necessity of control of the ventilation system with effects on the consumption of mechanical energy.


2013 ◽  
Vol 368-370 ◽  
pp. 603-606 ◽  
Author(s):  
Chun Han Chien ◽  
Hsien Te Lin

This study focuses on the efficiency of passive solar chimney in natural ventilation performance of the conference hall at the Magic School of Green Technology (MSGT) in Tainan, Taiwan. The air exchange rate in the conference hall was between 5.73 ACH and 9.11 ACH, which exceeded the minimum air ventilation rate required in Taiwan. This shows that a passive solar chimney can effectively applied to the conference hall to meet indoor ventilation and air exchange requirements without using air conditioning.


2019 ◽  
Vol 282 ◽  
pp. 02101
Author(s):  
Tomasz Kisilewicz ◽  
Katarzyna Nowak-Dzieszko ◽  
Małgorzata Rojewska-Warchał

The knowledge of the air flow and air exchange in the building is critical both on the design and operation stage of the building. Infiltration of air interferes with the mechanical ventilation and determines the proper functioning of the natural ventilation system, still commonly used in the standard buildings. The building airtightness can be described by n50 parameter, however it does not specify the real air exchange in natural conditions. According to the simple procedure of the standard EN ISO 13789, factor n50 may be easily converted to the monthly averaged air change rate. However, it is difficult to accept the same value of air change rate in any month of a year, as it is often done in the certification procedures. More precise, climate dependent conversion procedures have been elaborated in USA, but they were developed for the specific local building technology and local climate conditions. This paper presents the results of the preliminary measurements conducted in a single family house in Poland, built in a heavy-weight technology. The real air exchange rate was measured in various climatic conditions by means of gas tracing method, with CO2 as the tracer gas, in order to prove a relationship between the enhanced procedure and the external conditions. Acceptable agreement between the results of the measurement and model calculations was obtained. Based on the preliminary results, the authors determined the more realistic influence of the enhanced algorithm on the ventilation energy demand. The use of the simplified model resulted in case of the analyzed object in 15% overestimation of the ventilation thermal losses.


Sign in / Sign up

Export Citation Format

Share Document