scholarly journals Optimization of Air-cooling System for a Lithium-ion Battery Pack

2021 ◽  
Vol 321 ◽  
pp. 02018
Author(s):  
Sungwook Jin ◽  
Min-Sik Youn ◽  
Youn-Jea Kim

Lithium-ion batteries have been used as energy storage technologies for electric vehicles or power plants due to their high energy density, low self-discharge rate, and long lifespan. Since the temperature of the batteries are directly related with their durability, distributing the temperature uniformly and efficiently is critically important. In this study, a technology using forced convection with air was implemented to remove heat of the battery cells inside a package. The performance of the cooling system was evaluated by changing the gap distance between the battery cells and the configurations of the air channel. In order to improve the cooling performance of the battery, the shape of the battery module was optimized. To begin the optimization process, a sensitivity analysis was conducted to analyze the influence of the design parameters on the battery performance. Based on the result from the analysis, an optimization process was performed to determine an optimum channel design. As a result of the optimization, a battery cell package with the lowest maximum temperature and a minimum deviation between the temperature in between each cell was selected.

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7954
Author(s):  
Robby Dwianto Widyantara ◽  
Muhammad Adnan Naufal ◽  
Poetro Lebdo Sambegoro ◽  
Ignatius Pulung Nurprasetio ◽  
Farid Triawan ◽  
...  

Temperature management for battery packs installed in electric vehicles is crucial to ensure that the battery works properly. For lithium-ion battery cells, the optimal operating temperature is in the range of 25 to 40 °C with a maximum temperature difference among battery cells of 5 °C. This work aimed to optimize lithium-ion battery packing design for electric vehicles to meet the optimal operating temperature using an air-cooling system by modifying the number of cooling fans and the inlet air temperature. A numerical model of 74 V and 2.31 kWh battery packing was simulated using the lattice Boltzmann method. The results showed that the temperature difference between the battery cells decreased with the increasing number of cooling fans; likewise, the mean temperature inside the battery pack decreased with the decreasing inlet air temperature. The optimization showed that the configuration of three cooling fans with 25 °C inlet air temperature gave the best performance with low power required. Even though the maximum temperature difference was still 15 °C, the configuration kept all battery cells inside the optimum temperature range. This finding is helpful to develop a standardized battery packing module and for engineers in designing low-cost battery packing for electric vehicles.


Author(s):  
Zhiqiang Li ◽  
Xiaowei Fan ◽  
Fang Wang ◽  
Dasi He ◽  
Shifei Wei

This paper focuses on the cooling solution to a high energy density and large capacity Li-ion battery system which consist of four packs of 26650 cells. The cooling measure is a critical technology for many Li-ion battery systems especially that designed for hybrid electric vehicles, in which, high energy density within a limited space is very common in these systems. Both the safety and efficiency of Li-ion battery cells rely on the temperature which is under control of the battery thermal management system. In this study, temperature fields within battery boxes are simulated with the computational fluid dynamic (CFD) method. With the help of an airconditioner, a cooling solution is proposed for a relatively large dimensional, high energy density Li-ion battery cells array using by vehicles. Through the proposed solution, the maximum single-cell temperature is restricted to a reasonable level, and the maximum temperature difference throughout the battery system is also improved.


Author(s):  
Xiangping Liao ◽  
Chong Ma ◽  
Xiongbin Peng ◽  
Akhil Garg ◽  
Nengsheng Bao

Electric vehicles have become a trend in recent years, and the lithium-ion battery pack provides them with high power and energy. The battery thermal system with air cooling was always used to prevent the high temperature of the battery pack to avoid cycle life reduction and safety issues of lithium-ion batteries. This work employed an easily applied optimization method to design a more efficient battery pack with lower temperature and more uniform temperature distribution. The proposed method consisted of four steps: the air-cooling system design, computational fluid dynamics code setups, selection of surrogate models, and optimization of the battery pack. The investigated battery pack contained eight prismatic cells, and the cells were discharged under normal driving conditions. It was shown that the optimized design performs a lower maximum temperature of 2.7 K reduction and a smaller temperature standard deviation of 0.3 K reduction than the original design. This methodology can also be implemented in industries where the battery pack contains more battery cells.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1698 ◽  
Author(s):  
Ri-Guang Chi ◽  
Seok-Ho Rhi

Recently, the use of electrical vehicles has abruptly increased due to environmental crises. The high energy density of lithium-ion batteries is their main advantage for use in electric vehicles (EVs). However, the thermal management of Li-ion batteries is a challenge due to the poor heat resistance of Lithium ions. The performance and lifetime of lithium ion batteries are strongly affected by the internal operating temperature. Thermal characterization of battery cells is very important to ensure the consistent operation of a Li-ion battery for its application. In the present study, the OHP (Oscillating Heat Pipe) system is proposed as a battery cooling module, and experimental verification was carried out. OHP is characterized by a long evaporator section, an extremely short condenser section, and almost no adiabatic section. Experimental investigations were conducted using various parameters such as the filling ratio, orientation, coolant temperature, and heat flux. Average temperature of the heater’s surface was maintained at 56.4 °C using 14 W with 25 °C coolant water. The experimental results show that the present cooling technology basically meets the design goal of consistent operation.


Author(s):  
A. H. N. Shirazi ◽  
M. R. Azadi Kakavand ◽  
T. Rabczuk

Rechargeable lithium-ion batteries (LIBs) are now playing crucial roles in power supply and energy storage systems. Among all types of rechargeable batteries available nowadays, LIBs are one of the most important ways to store energy because of their high energy density, high operating voltage, and low rate of self-discharge. Nonetheless, the performance of LIBs could be improved by different design parameters, such as the size of solid particles in the battery composite electrodes. Therefore, this study aims to investigate the effect of the composite electrode particles size on the electrochemical and heat generation of an LIB. A Newman's electrochemical pseudo two-dimenisonal model was used to model the LIB cell. Reversible heat produced through electrochemical reactions was calculated as well as irreversible heat originating from internal resistances in the battery cell. Our results show that smaller sizes of electrode solid particles improve the thermal characteristics of the battery, especially in higher charge and discharge currents (C-rate). Furthermore, as the solid particle sizes decrease, the battery capacity increases for various C-rates in charge and discharge cycles.


2013 ◽  
Vol 28 (11) ◽  
pp. 1207-1212 ◽  
Author(s):  
Jian-Wen LI ◽  
Ai-Jun ZHOU ◽  
Xing-Quan LIU ◽  
Jing-Ze LI

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 122
Author(s):  
Renwei Lu ◽  
Xiaolong Ren ◽  
Chong Wang ◽  
Changzhen Zhan ◽  
Ding Nan ◽  
...  

Lithium-ion hybrid capacitors (LICs) are regarded as one of the most promising next generation energy storage devices. Commercial activated carbon materials with low cost and excellent cycling stability are widely used as cathode materials for LICs, however, their low energy density remains a significant challenge for the practical applications of LICs. Herein, Na0.76V6O15 nanobelts (NaVO) were prepared and combined with commercial activated carbon YP50D to form hybrid cathode materials. Credit to the synergism of its capacitive effect and diffusion-controlled faradaic effect, NaVO/C hybrid cathode displays both superior cyclability and enhanced capacity. LICs were assembled with the as-prepared NaVO/C hybrid cathode and artificial graphite anode which was pre-lithiated. Furthermore, 10-NaVO/C//AG LIC delivers a high energy density of 118.9 Wh kg−1 at a power density of 220.6 W kg−1 and retains 43.7 Wh kg−1 even at a high power density of 21,793.0 W kg−1. The LIC can also maintain long-term cycling stability with capacitance retention of approximately 70% after 5000 cycles at 1 A g−1. Accordingly, hybrid cathodes composed of commercial activated carbon and a small amount of high energy battery-type materials are expected to be a candidate for low-cost advanced LICs with both high energy density and power density.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Chen Li ◽  
Xiong Zhang ◽  
Kai Wang ◽  
Xianzhong Sun ◽  
Yanan Xu ◽  
...  

AbstractLithium-ion capacitors are envisaged as promising energy-storage devices to simultaneously achieve a large energy density and high-power output at quick charge and discharge rates. However, the mismatched kinetics between capacitive cathodes and faradaic anodes still hinder their practical application for high-power purposes. To tackle this problem, the electron and ion transport of both electrodes should be substantially improved by targeted structural design and controllable chemical doping. Herein, nitrogen-enriched graphene frameworks are prepared via a large-scale and ultrafast magnesiothermic combustion synthesis using CO2 and melamine as precursors, which exhibit a crosslinked porous structure, abundant functional groups and high electrical conductivity (10524 S m−1). The material essentially delivers upgraded kinetics due to enhanced ion diffusion and electron transport. Excellent capacities of 1361 mA h g−1 and 827 mA h g−1 can be achieved at current densities of 0.1 A g−1 and 3 A g−1, respectively, demonstrating its outstanding lithium storage performance at both low and high rates. Moreover, the lithium-ion capacitor based on these nitrogen-enriched graphene frameworks displays a high energy density of 151 Wh kg−1, and still retains 86 Wh kg−1 even at an ultrahigh power output of 49 kW kg−1. This study reveals an effective pathway to achieve synergistic kinetics in carbon electrode materials for achieving high-power lithium-ion capacitors.


Sign in / Sign up

Export Citation Format

Share Document