scholarly journals Analysis of surface effect on solar-like oscillation frequencies using 3D hydrodynamical models

2019 ◽  
Vol 82 ◽  
pp. 253-258
Author(s):  
T. Sonoi ◽  
R. Samadi ◽  
K. Belkacem ◽  
H.-G. Ludwig ◽  
E. Caffau ◽  
...  

We evaluate the frequency difference between standard stellar models and models patched with 3D hydrodynamical models across the Teff–g plane. It allows us to constrain frequency corrections for surface effect. The coefficients in the correction functionals are thus provided as functions of effective temperature and surface gravity.

2019 ◽  
Vol 491 (1) ◽  
pp. 1160-1173 ◽  
Author(s):  
Jakob Rørsted Mosumgaard ◽  
Andreas Christ Sølvsten Jørgensen ◽  
Achim Weiss ◽  
Víctor Silva Aguirre ◽  
Jørgen Christensen-Dalsgaard

ABSTRACT Models of stellar structure and evolution are an indispensable tool in astrophysics, yet they are known to incorrectly reproduce the outer convective layers of stars. In the first paper of this series, we presented a novel procedure to include the mean structure of 3D hydrodynamical simulations on-the-fly in stellar models, and found it to significantly improve the outer stratification and oscillation frequencies of a standard solar model. In this work, we extend the analysis of the method; specifically how the transition point between envelope and interior affects the models. We confirm the versatility of our method by successfully repeating the entire procedure for a different grid of 3D hydrosimulations. Furthermore, the applicability of the procedure was investigated across the HR diagram and an accuracy comparable to the solar case was found. Moreover, we explored the implications on stellar evolution and find that the red-giant branch is shifted about $40\, \mathrm{K}$ to higher effective temperatures. Finally, we present for the first time an asteroseismic analysis based on stellar models fully utilizing the stratification of 3D simulations on-the-fly. These new models significantly reduce the asteroseismic surface term for the two selected stars in the Kepler field. We extend the analysis to red giants and characterize the shape of the surface effect in this regime. Lastly, we stress that the interpolation required by our method would benefit from new 3D simulations, resulting in a finer sampling of the grid.


2019 ◽  
Vol 488 (3) ◽  
pp. 3463-3473 ◽  
Author(s):  
Andreas Christ Sølvsten Jørgensen ◽  
Achim Weiss

Abstract State-of-the-art 1D stellar evolution codes rely on simplifying assumptions, such as mixing length theory, in order to describe superadiabatic convection. As a result, 1D stellar structure models do not correctly recover the surface layers of the Sun and other stars with convective envelopes. We present a method that overcomes this structural drawback by employing 3D hydrodynamic simulations of stellar envelopes: at every time-step of the evolution interpolated 3D envelopes are appended to the 1D structure and are used to supply realistic boundary conditions for the stellar interior. In contrast to previous attempts, our method includes mean 3D turbulent pressure. We apply our method to model the present Sun. The structural shortcomings of standard stellar models lead to systematic errors in the stellar oscillation frequencies inferred from the model. We show that our method fully corrects for this error. Furthermore, we show that our realistic treatment of superadiabatic convection alters the predicted evolution of the Sun. Our results hence have important implications for the characterization of stars. This has ramifications for neighbouring fields, such as exoplanet research and galactic archaeology, for which accurate stellar models play a key role.


2019 ◽  
Vol 621 ◽  
pp. A84 ◽  
Author(s):  
T. Sonoi ◽  
H.-G. Ludwig ◽  
M.-A. Dupret ◽  
J. Montalbán ◽  
R. Samadi ◽  
...  

Context. Space observations by the CoRoT and Kepler missions have provided a wealth of high-quality seismic data for a large number of stars from the main sequence to the red giant phases. One main goal of these missions is to take advantage of the rich spectra of solar-like oscillations to perform precise determinations of stellar characteristic parameters. To make the best of such data, we need theoretical stellar models with a precise near-surface structure since a near-surface structure of a solar-like star has significant influence on solar-like oscillation frequencies. The mixing-length parameter is a key factor to determine the near-surface structure of stellar models. In current versions of the convection formulations used in stellar evolution codes, the mixing-length parameter is a free parameter that needs to be properly specified. Aims. We aim at determining appropriate values of the mixing-length parameter, α, to be used consistently with the adopted convection formulation when computing stellar evolution models across the Hertzsprung–Russell diagram. This determination is based on 3D hydrodynamical simulation models. Methods. We calibrated α values by matching entropy profiles of 1D envelope models with those of hydrodynamical 3D models of solar-like stars produced by the CO5BOLD code. For such calibration, previous works concentrated on the classical mixing-length theory (MLT). We also analyzed full spectrum turbulence (FST) models. To construct the atmosphere in the 1D models, we used the Eddington gray T(τ) relation and that with the solar-calibrated Hopf-like function. Results. For both MLT and FST models with a mixing length l = αHp, calibrated α values increase with increasing surface gravity or decreasing effective temperature. For the FST models, we carried out an additional calibration using an α* value defined as l = rtop − r + α*Hp, top, where α* is found to increase with surface gravity and effective temperature. We provide tables of the calibrated α values across the Teff–log g plane for solar metallicity. By computing stellar evolution with varying α based on our 3D α calibration, we find that the change from solar α to varying α shifts evolutionary tracks particularly for the FST model. As for the correspondence to the 3D models, the solar Hopf-like function generally gives a photospheric-minimum entropy closer to a 3D model than the Eddington T(τ). The structure below the photosphere depends on the adopted convection model. However, we cannot obtain a definitive conclusion about which convection model gives the best correspondence to the 3D models. This is because each 1D physical quantity is related via an equation of state (EoS), but it is not the case for the averaged 3D quantities. Although the FST models with l = rtop − r + α*Hp, top are found to give the oscillation frequencies closest to the solar observed frequencies, their acoustic cavities are formed with compensatory effects between deviating density and temperature profiles near the top of the convective envelope. In future work, an appropriate treatment of the top part of the 1D convective envelope is necessary, for example, by considering turbulent pressure and overshooting.


Author(s):  
Elena Cukanovaite ◽  
Pier-Emmanuel Tremblay ◽  
Pierre Bergeron ◽  
Bernd Freytag ◽  
Hans-Günter Ludwig ◽  
...  

Abstract In this paper, we present corrections to the spectroscopic parameters of DB and DBA white dwarfs with −10.0 ≤ log (H/He) ≤−2.0, 7.5 ≤ log g ≤9.0 and 12 000 K ≲ Teff ≲ 34 000 K, based on 282 3D atmospheric models calculated with the CO5BOLD radiation-hydrodynamics code. These corrections arise due to a better physical treatment of convective energy transport in 3D models when compared to the previously available 1D model atmospheres. By applying the corrections to an existing SDSS sample of DB and DBA white dwarfs, we find significant corrections both for effective temperature and surface gravity. The 3D log g corrections are most significant for Teff ≲ 18, 000 K, reaching up to −0.20 dex at log g = 8.0. However, in this low effective temperature range, the surface gravity determined from the spectroscopic technique, can also be significantly affected by the treatment of the neutral van der Waals line broadening of helium and by non-ideal effects due to the perturbation of helium by neutral atoms. Thus, by removing uncertainties due to 1D convection, our work showcases the need for improved description of microphysics for DB and DBA model atmospheres. Overall, we find that our 3D spectroscopic parameters for the SDSS sample are generally in agreement with Gaia DR2 absolute fluxes within 1-3σ for individual white dwarfs. By comparing our results to DA white dwarfs, we determine that the precision and accuracy of DB/DBA atmospheric models are similar. For ease of user application of the correction functions, we provide an example Python code.


1979 ◽  
Vol 53 ◽  
pp. 125-129
Author(s):  
F. Wesemael ◽  
H.M. Van Horn

Model atmosphere analyses of white dwarf spectra have contributed significantly to our understanding of the properties of degenerate stars.: In particular, the pioneering investigations of Bues (1970), Strittmatter and Wickramasinghe (1971) and Shipman (1972) have provided the first reliable determinations of the effective temperature and surface gravity of these objects (see Shipman 1979 and Weidemann 1978 for recent results). We now know with certainty that the hydrogen-rich white dwarf sequence extends at least over the range Te ∽ 6000 – 60.000K. In contrast, the hottest identified helium-rich white dwarfs seem to reach Te ~ 25.000K only, a puzzling result since the progenitors of DB white dwarfs should presumably also be helium-rich.


2020 ◽  
Vol 498 (1) ◽  
pp. L15-L19
Author(s):  
Matthew I Swayne ◽  
Pierre F L Maxted ◽  
Vedad Kunovac Hodžić ◽  
Amaury H M J Triaud

ABSTRACT A 2014 study of the eclipsing binary star 1SWASPJ011351.29+314909.7 (J0113+31) reported an unexpectedly high effective temperature for the M-dwarf companion to the 0.95-M⊙ primary star. The effective temperature inferred from the secondary eclipse depth was ∼600 K higher than the value predicted from stellar models. Such an anomalous result questions our understanding of low-mass stars and might indicate a significant uncertainty when inferring properties of exoplanets orbiting them. We seek to measure the effective temperature of the M-dwarf companion using the light curve of J0113+31 recently observed by the Transiting Exoplanet Survey Satellite (TESS). We use the pycheops modelling software to fit a combined transit and eclipse model to the TESS light curve. To calculate the secondary effective temperature, we compare the best-fitting eclipse depth to the predicted eclipse depths from theoretical stellar models. We determined the effective temperature of the M dwarf to be Teff,2 = 3208 ± 43 K, assuming log g2 = 5, [Fe/H] = −0.4, and no alpha-element enhancement. Varying these assumptions changes Teff,2 by less than 100 K. These results do not support a large anomaly between observed and theoretical low-mass star temperatures.


2020 ◽  
Vol 492 (4) ◽  
pp. 5844-5852 ◽  
Author(s):  
A S Rajpurohit ◽  
Vipin Kumar ◽  
Mudit K Srivastava ◽  
F Allard ◽  
D Homeier ◽  
...  

ABSTRACT Mt Abu Faint Object Spectrograph and Camera (MFOSC-P) is an in-house-developed instrument for the Physical Research Laboratory (PRL) 1.2 m telescope at Mt Abu, India, commissioned in 2019 February. Here we present the first science results derived from the low-resolution spectroscopy programme of a sample of M dwarfs carried out during the commissioning run of MFOSC-P between 2019 February and June. M dwarfs carry great significance for exoplanet searches in the habitable zone and are among the promising candidates for the observatory’s several ongoing observational campaigns. Determination of their accurate atmospheric properties and fundamental parameters is essential to constrain both their atmospheric and evolutionary models. In this study, we provide a low-resolution (R ∼ 500) spectroscopic catalogue of 80 bright M dwarfs (J < 10) and classify them using their optical spectra. We have also performed spectral synthesis and χ2 minimization techniques to determine their fundamental parameters regarding effective temperature and surface gravity by comparing the observed spectra with the most recent BT-Settl synthetic spectra. The spectral type of M dwarfs in our sample ranges from M0 to M5. The derived effective temperature and surface gravity range from 4000–3000 K and 4.5–5.5 dex, respectively. In most of the cases, the derived spectral types are in good agreement with previously assigned photometric classifications.


2017 ◽  
Vol 14 (S339) ◽  
pp. 345-348
Author(s):  
H. Yuan ◽  
Y. Zhang ◽  
Y. Lei ◽  
Y. Dong ◽  
Z. Bai ◽  
...  

AbstractWith so many spectroscopic surveys, both past and upcoming, such as SDSS and LAMOST, the number of accessible stellar spectra is continuously increasing. There is therefore a great need for automated procedures that will derive estimates of stellar parameters. Working with spectra from SDSS and LAMOST, we put forward a hybrid approach of Kernel Principal Component Analysis (KPCA) and Support Vector Machine (SVM) to determine the stellar atmospheric parameters effective temperature, surface gravity and metallicity. For stars with both APOGEE and LAMOST spectra, we adopt the LAMOST spectra and APOGEE parameters, and then use KPCA to reduce dimensionality and SVM to measure parameters. Our method provides reliable and precise results; for example, the standard deviation of effective temperature, surface gravity and metallicity for the test sample come to approximately 47–75 K, 0.11–0.15 dex and 0.06–0.075 dex, respectively. The impact of the signal:noise ratio of the observations upon the accuracy of the results is also investigated.


1993 ◽  
Vol 134 ◽  
pp. 193-195
Author(s):  
Li Zhiping

AbstractThe measurements of uvby Hβ of HD 93044 were obtained in April 1991. and the observational results that the star locates nearly in the middle of δ Scuti instability strip with somewhat deviation to red edge. According to Crawford (1979) and Philip’s (1979) calibrations, the effective temperature, absolute visual magnitude and surface gravity are obtained to be Teff = 7300±200 K, Mv = l.m33±0.39 and logg = 3.7±0.15, respectively. The observational results of Δmi = 0.01 give an estimate of [Fe/H] = —0.003 ± 0.18, so the opinion of metallic deficient is not supported obviously. The observations show the reddening index E(b — y) to be 0.014 which is 1.4 times as large as the standard deviation of Crawford’s (1979) statistics.


Sign in / Sign up

Export Citation Format

Share Document