scholarly journals Hadronic interactions and cosmic rays at ultra high energies

2013 ◽  
Vol 53 ◽  
pp. 07004
Author(s):  
Paolo Lipari
2019 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Sergey Ostapchenko

The differences between contemporary Monte Carlo generators of high energy hadronic interactions are discussed and their impact on the interpretation of experimental data on ultra-high energy cosmic rays (UHECRs) is studied. Key directions for further model improvements are outlined. The prospect for a coherent interpretation of the data in terms of the UHECR composition is investigated.


2005 ◽  
Vol 20 (29) ◽  
pp. 6878-6880 ◽  
Author(s):  
V. P. EGOROVA ◽  
A. V. GLUSHKOV ◽  
A. A. IVANOV ◽  
S. P. KNURENKO ◽  
V. A. KOLOSOV ◽  
...  

The energy spectrum of primary cosmic rays with ultra-high energies based on the Yakutsk EAS Array data is presented. For the largest events values of S600 and axis coordinates have been obtained using revised lateral distribution function. The effect of the arrival time distribution at several axis distance on estimated density for Yakutsk and AGASA is considered.


2019 ◽  
Vol 210 ◽  
pp. 00001
Author(s):  
Alan Watson

The greater part of this paper is concerned with a historical discussion of the development of the search for the origins of the highest-energy cosmic-rays together with a few remarks about future prospects.Additionally, in section 6, the situation with regard to the mass composition and energy spectrum at the highest energies is discussed. It is shown that the change of the depth of shower maximum with energy above 1 EeV, measured using the Telescope Array, is in striking agreement with similar results from the Auger Observatory. This implies that either the mean mass of cosmic rays is becoming heavier above ~4 EeV or that there is a change in details of the hadronic interactions in a manner such that protons masquerade as heavier nuclei. A long-standing controversy is thus resolved: the belief that pure protons dominate the mass distribution at the highest energies is no longer tenable.


Universe ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 4 ◽  
Author(s):  
I. M. Dremin

It is argued that the cross sections of ultraperipheral interactions of heavy nuclei can become comparable in value to those of their ordinary hadronic interactions at high energies. Simple estimates of corresponding “preasymptotic energy thresholds” are provided. The method of equivalent photons is compared with the perturbative approach. The situation at NICA/FAIR energies is discussed.


1981 ◽  
Vol 94 ◽  
pp. 71-72
Author(s):  
T. K. Gaisser ◽  
Todor Stanev ◽  
Phyllis Freier ◽  
C. Jake Waddington

Knowledge of the chemical composition is fundamental to understanding the origin, acceleration and propagation of cosmic rays. At energies much above 1014 eV, however, the detection of single primary cosmic rays is at present impossible because of their low flux, and the only source of information is from the cascades initiated by energetic primary particles in the atmosphere–the extensive air showers (EAS). A similar situation exists for the study of hadronic interactions above 1015 eV. A recent EAS experiment (Goodman et al., 1979) suggests the possibility that the spectrum becomes increasingly rich in heavy nuclei as the total energy per nucleus approaches 1015 eV. Above that energy the overall spectrum steepens and the question of composition is almost completely open.


2019 ◽  
Vol 207 ◽  
pp. 02007
Author(s):  
Christoph Raab ◽  
Juan Antonio Aguilar Sánchez

Blazars have long been considered as accelerator candidates for cosmic rays. In such a scenario, hadronic interactions in the jet would produce neutrinos and gamma rays. Correlating the astrophysical neutrinos detected by IceCube with the gamma-ray emission from blazars could therefore help elucidate the origin of cosmic rays. In our method we focus on periods where blazars show an enhanced gamma-ray flux, as measured by Fermi-LAT, thereby reducing the background of the search. We present results for TXS 0506+056, using nearly 10 years of IceCube data and discuss them in the context of other recent analyses on this source. In addition, we give an outlook on applying this method in a stacked search for the combined emission from a selection of variable Fermi blazars.


Sign in / Sign up

Export Citation Format

Share Document