scholarly journals An experimental investigation of energy absorption in TRIP steel under impact three-point bending deformation

2015 ◽  
Vol 94 ◽  
pp. 02004 ◽  
Author(s):  
Hang Pham ◽  
Takeshi Iwamoto
2014 ◽  
Vol 626 ◽  
pp. 340-346 ◽  
Author(s):  
Hang Thi Pham ◽  
Lei Shi Shi ◽  
Takeshi Iwamoto

In the last few decades, energy absorption of materials becomes an critical issue in a design process of a vehicle because risks of primary and secondary accidents against pedestrians, other road users and structures can be reduced by a performance of absorbing energy in its support structures. Among various materials used for the structures, TRIP steel with favorable mechanical properties such as excellent formability and higher impact energy absorption is attractive to automotive industries. Huge numbers of research works have been carried out to investigate deformation behavior of TRIP steel. However, just few studies can be found on the performance in TRIP steel, especially, at higher deformation rate during the crash of the vehicle. Kinetic energy by higher speed of the vehicle will be consumed by inelastic bending deformation of components. Thus, a consideration of bending deformation at high impact velocity is required for the evaluation of the performance. In this study, the performance in TRIP steel at high deformation rate is clarified by conducting both quasi-static and impact three-point bending tests for pre-cracked specimen.


2016 ◽  
Vol 725 ◽  
pp. 60-65
Author(s):  
Asuka Hayashi ◽  
Takeshi Iwamoto

TRIP steel possesses high strength and excellent ductility. In addition, it is possible that TRIP steel indicates high energy absorption so that TRIP steel is expected to apply to automotive members. To design the members made of TRIP steel, it is important to clarify its energy absorption characteristic at various deformation rates. In the previous study, the energy absorption characteristic of TRIP steel is evaluated by J-integral under quasi-static to dynamic condition by using a thick specimen based on ASTM standard. However, by using such thick specimens, it is difficult to conduct the three-point bending test under impact condition because of high ductility in TRIP steel. A small punch (SP) test is the experimental method which can evaluate fracture parameters such as J-integral. By using a conventional use of small specimen in the SP test, it is possible to evaluate J-integral of TRIP steel under impact deformation. In this study, energy absorption characteristic of TRIP steel is investigated by SP test under different deflection rates. Then, the relationship between the values of J-integral obtained by previously conducted three-point bending test and the SP test of TRIP steel is discussed.


Mechanika ◽  
2021 ◽  
Vol 27 (6) ◽  
pp. 442-450
Author(s):  
Kun YANG ◽  
Yunjie SHA ◽  
Tao YU

In this paper, the quasi-static three-point bending experiments are carried out to study the deformation behavior of square tube and square tube filled with foam aluminum. The difference of bending deformation mode, loading characteristics and energy absorption efficiency between tube and foam aluminum filled tube is compared. And the influence of adhesive between the foam aluminum core and the tube wall on the bending deformation of square tube filled with foam aluminum is analyzed. Based on the bending super beam element model of tube structure, the relationship between the moment and rotation of square tube filled with foam aluminum under transverse static loading is analyzed. And the formula for calculating the moment and rotation angle of square tube filled with foam aluminum at three-point bending is obtained. In order to compare the simulation results, theoretical calculation results and experimental results of quasi-static bending, the three-point bending deformation of square tube and filled with foam aluminum under quasi-static and impact loading is simulated by finite element method. The results show that the filling of foam aluminum can improve the bearing capacity and energy absorption performance of the square tube structure. Under the bending load, the deformation degree of the bearing section is greatly reduced, which increases the bearing capacity of the structure and increases the stability of its bending resistance.


Author(s):  
Jafar Rouzegar ◽  
Abbas Niknejad ◽  
Seyed Mohammad Elahi ◽  
Seyed Ahmad Elahi ◽  
Seyed Ali Elahi

2005 ◽  
Vol 297-300 ◽  
pp. 1339-1343 ◽  
Author(s):  
Gui Ping Zhao ◽  
Chong Du Cho ◽  
Oh Yang Kwon

In this paper, the energy absorption characteristics on extruded aluminum box-section strengthened with carbon-fiber-reinforced plastics (CFRP) laminates and/or foam material were investigated under impact loading. Impact tests using a pneumatic impact tester were conducted with the specimens in three-point bending flexure with consideration given to the side-door impact beams in vehicles. The absorbed energy to the specimen during the impact was determined from the loaddisplacement curve, which was obtained from the strain gauge attached to the impactor and the laser displacement transducer. From the results, it was found that the strengthening by externally bonding with CFRP laminates improved the impact-induced energy absorption. Also, the effect of the improvement was clearly seen in the case of the use of filling form material in the aluminum extrusion together with attaching CFRP laminates.


2014 ◽  
Vol 626 ◽  
pp. 228-233 ◽  
Author(s):  
Kazuki Fujita ◽  
Keizo Nishikori ◽  
Takeshi Iwamoto

In various kinds of shape memory alloy (SMA), Fe-based SMA (Fe-SMA) shows smaller shape memory effect compared with the other SMAs. However, Fe-SMA shows huge advantages on the excellent formability, machinability, etc. Moreover, its production cost is cheaper than other SMAs; therefore, the alloy is attempted to be applied to structural members such as joints and dampers. Since bending deformation at higher deformation rate is generated in the members, especially the joints, due to impact force such as earthquake or wind, a clarification on the bending strength of the joints at various deformation rate is strongly required. In this study, at first, it is attempted that the bending strength and its rate sensitivity of the joints which consist of Fe-based SMA are experimentally estimated by the three-point bending test at various deformation rate. Then, the force balance equation is challenged to be derived to predict the bending strength.


2017 ◽  
Vol 904 ◽  
pp. 61-67
Author(s):  
Tahir Abbas ◽  
Hamdan H. Ya ◽  
Mohamad Zaki Abdullah

This paper describes the failure modes and energy absorption capability of partially wrapped aluminium-glass/epoxy tubes, subjected to quasi-static loading. ‎These tubes are used in aircraft and automobiles applications. Aluminium tubes were partially wrapped with 4, 6 and 8 glass/epoxy layers, using filament winding process. The 90◦ fiber orientation was used for glass/epoxy layers. Quasi-static loading of partially wrapped tubes was carried out at 5mm/min speed, using the universal ‎testing machine. The experimental results revealed that partially wrapped aluminium tubes are 42.54%, 47.77% and 28.91% more ‎efficient in energy absorption as compared to the simple aluminium tubes. Furthermore, the effect of glass/epoxy layers on ‎failure modes has also been described.


Sign in / Sign up

Export Citation Format

Share Document