scholarly journals Hartle-Hawking wave function and large-scale power suppression of CMB

2018 ◽  
Vol 168 ◽  
pp. 08002
Author(s):  
Dong-han Yeom

In this presentation, we first describe the Hartle-Hawking wave function in the Euclidean path integral approach. After we introduce perturbations to the background instanton solution, following the formalism developed by Halliwell-Hawking and Laflamme, one can obtain the scale-invariant power spectrum for small-scales. We further emphasize that the Hartle-Hawking wave function can explain the large-scale power suppression by choosing suitable potential parameters, where this will be a possible window to confirm or falsify models of quantum cosmology. Finally, we further comment on possible future applications, e.g., Euclidean wormholes, which can result in distinct signatures to the power spectrum.

2011 ◽  
Vol 03 ◽  
pp. 183-194
Author(s):  
NELSON PINTO-NETO

In this contribution I will present a review about bouncing models arriving from quantum cosmology and show how one can describe the evolution of quantum cosmological perturbations on them. I will discuss the important role played by the choice of the precise quantum theory one selects to interpret the wave function of the Universe in order to obtain simple equations for the evolution of quantum perturbations on these quantum cosmological backgrounds. I will present the predictions of these models concerning the power spectrum of cosmological perturbations and how they can be compared with the usual results obtained from inflationary models. Finally, I will present the new implications of these results for quantum theory.


2005 ◽  
Vol 201 ◽  
pp. 368-376
Author(s):  
S. L. Bridle

We compare and combine likelihood functions of the cosmological parameters Ωm, h and σ8 from the CMB, type Ia supernovae and from probes of large scale structure. We include the recent results from the CMB experiments BOOMERANG and MAXIMA-1. Our analysis assumes a flat ACDM cosmology with a scale-invariant adiabatic initial power spectrum. First we consider three data sets that directly probe the mass in the Universe, without the need to relate the galaxy distribution to the underlying mass via a “biasing” relation: peculiar velocities, CMB and supernovae. We assume a baryonic fraction as inferred from Big-Bang Nucleosynthesis and find that all three data sets agree well, overlapping significantly at the 2σ level. This therefore justifies a joint analysis, in which we find a joint best fit point and 95% confidence limits of Ωm = 0.28 (0.17, 0.39), h = 0.74 (0.64, 0.86), and σ8 = 1.17 (0.98,1.37). Secondly we extend our earlier work on combining CMB, supernovae, cluster number counts, IRAS galaxy redshift survey data to include BOOMERANG and MAXIMA-1 data and to allow a free Ωbh2. We find that, given our assumption of a scale invariant initial power spectrum (n = 1), we obtain the robust result of Ωbh2 = 0.031 ± 0.03, which is dominated by the CMB constraint.


1996 ◽  
Vol 3 (4) ◽  
pp. 236-246 ◽  
Author(s):  
L. Seuront ◽  
F. Schmitt ◽  
D. Schertzer ◽  
Y. Lagadeuc ◽  
S. Lovejoy

Abstract. In this paper, we present evidence that intermittency of Eulerian and Lagrangian turbulence of ocean temperature and plankton fields is multifractal and furthermore can be analysed with the help of universal multifractals. We analyse time series of temperature and in vivo fluorescence taken from a drifter in the mixed coastal waters of the eastern English Channel. Two analysis techniques are used to compute the fundamental universal multifiractal parameters, which describe all the statistics of the turbulent fluctuations: the analysis of the scale invariant structure function exponent ζ(q) and the Double Trace Moment technique. At small scales, we do not detect any significant difference between the universal multifiractal behavior of temperature and fluorescence in an Eulerian framework. This supports the hypothesis that the latter is passively advected with the flow as the former. On the one hand, we show that large scale measurements are Lagrangian and indeed we obtain for temperature fluctuations a ω2 power spectrum corresponding to the theoretical scaling of a Lagrangian passive scalar. Furthermore, we show that Lagrangian temperature fluctuations are multiscaling and intermittent. On the other hand, the flatter slope at large scales of the fluorescence power spectrum points out that the plankton is at these scales a "biologically active" scalar.


2014 ◽  
Vol 29 (32) ◽  
pp. 1450194 ◽  
Author(s):  
Yupeng Yang

Many inflation theories predict that the primordial power spectrum is scale invariant. The amplitude of the power spectrum can be constrained by different observations such as the cosmic microwave background (CMB), Lyman-α, large-scale structures and primordial black holes (PBHs). Although the constraints from the CMB are robust, the corresponding scales are very large (10-4 < k < 1 Mpc -1). For small scales (k > 1 Mpc -1), the research on the PBHs provides much weaker limits. Recently, ultracompact dark matter minihalos (UCMHs) was proposed and it was found that they could be used to constraint the small-scale primordial power spectrum. The limits obtained by the research on the UCMHs are much better than that of PBHs. Most of previous works focus on the dark matter annihilation within the UCMHs, but if the dark matter particles do not annihilate the decay is another important issue. In previous work [Y.-P. Yang, G.-L. Yang and H.-S. Zong, Europhys. Lett.101, 69001 (2013)], we investigated the gamma-ray flux from the UCMHs due to the dark matter decay. In addition to these flux, the neutrinos are usually produced going with the gamma-ray photons especially for the lepton channels. In this work, we studied the neutrino flux from the UCMHs due to the dark matter decay. Finally, we got the constraints on the amplitude of primordial power spectrum of small scales.


Author(s):  
Abhay Ashtekar ◽  
Brajesh Gupt ◽  
V. Sreenath

While the standard, six-parameter, spatially flat ΛCDM model has been highly successful, certain anomalies in the cosmic microwave background bring out a tension between this model and observations. The statistical significance of any one anomaly is small. However, taken together, the presence of two or more of them imply that according to standard inflationary theories we live in quite an exceptional Universe. We revisit the analysis of the PLANCK collaboration using loop quantum cosmology, where an unforeseen interplay between the ultraviolet and the infrared makes the primordial power spectrum scale dependent at very small k. Consequently, we are led to a somewhat different ΛCDM Universe in which anomalies associated with large scale power suppression and the lensing amplitude are both alleviated. The analysis also leads to new predictions for future observations. This article is addressed both to cosmology and loop quantum gravity communities, and we have attempted to make it self-contained.


2011 ◽  
Vol 26 (22) ◽  
pp. 3801-3812
Author(s):  
NELSON PINTO-NETO

In this contribution I will present a review about bouncing models arriving from quantum cosmology and show how one can describe the evolution of quantum cosmological perturbations on them. I will discuss the important role played by the choice of the precise quantum theory one selects to interpret the wave function of the Universe in order to obtain simple equations for the evolution of quantum perturbations on these quantum cosmological backgrounds. I will present the predictions of these models concerning the power spectrum of cosmological perturbations and how they can be compared with the usual results obtained from inflationary models. Finally, I will present the new implications of these results for quantum theory.


1999 ◽  
Vol 523 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Wolfram Freudling ◽  
Idit Zehavi ◽  
Luiz N. da Costa ◽  
Avishai Dekel ◽  
Amiram Eldar ◽  
...  

Author(s):  
Ujjal Purkayastha ◽  
Vipin Sudevan ◽  
Rajib Saha

Abstract Recently, the internal-linear-combination (ILC) method was investigated extensively in the context of reconstruction of Cosmic Microwave Background (CMB) temperature anisotropy signal using observations obtained by WMAP and Planck satellite missions. In this article, we, for the first time, apply the ILC method to reconstruct the large scale CMB E mode polarization signal, which could probe the ionization history, using simulated observations of 15 frequency CMB polarization maps of future generation Cosmic Origin Explorer (COrE) satellite mission. We find that the clean power spectra, from the usual ILC, are strongly biased due to non zero CMB-foregrounds chance correlations. In order to address the issues of bias and errors we extend and improve the usual ILC method for CMB E mode reconstruction by incorporating prior information of theoretical E mode angular power spectrum while estimating the weights for linear combination of input maps (Sudevan & Saha 2018b). Using the E mode covariance matrix effectively suppresses the CMB-foreground chance correlation power leading to an accurate reconstruction of cleaned CMB E mode map and its angular power spectrum. We compare the performance of the usual ILC and the new method over large angular scales and show that the later produces significantly statistically improved results than the former. The new E mode CMB angular power spectrum contains neither any significant negative bias at the low multipoles nor any positive foreground bias at relatively higher mutlipoles. The error estimates of the cleaned spectrum agree very well with the cosmic variance induced error.


Author(s):  
Chul-Moon Yoo ◽  
Tomohiro Harada ◽  
Shin’ichi Hirano ◽  
Kazunori Kohri

Abstract We modify the procedure to estimate PBH abundance proposed in Ref. [1] so that it can be applied to a broad power spectrum such as the scale-invariant flat power spectrum. In the new procedure, we focus on peaks of the Laplacian of the curvature perturbation △ ζ and use the values of △ ζ and △ △ ζ at each peak to specify the profile of ζ as a function of the radial coordinate while the values of ζ and △ ζ are used in Ref. [1]. The new procedure decouples the larger-scale environmental effect from the estimate of PBH abundance. Because the redundant variance due to the environmental effect is eliminated, we obtain a narrower shape of the mass spectrum compared to the previous procedure in Ref. [1]. Furthermore, the new procedure allows us to estimate PBH abundance for the scale-invariant flat power spectrum by introducing a window function. Although the final result depends on the choice of the window function, we show that the k-space tophat window minimizes the extra reduction of the mass spectrum due to the window function. That is, the k-space tophat window has the minimum required property in the theoretical PBH estimation. Our procedure makes it possible to calculate the PBH mass spectrum for an arbitrary power spectrum by using a plausible PBH formation criterion with the nonlinear relation taken into account.


Sign in / Sign up

Export Citation Format

Share Document