scholarly journals Surrounding matter theory

2018 ◽  
Vol 182 ◽  
pp. 03006
Author(s):  
Frederic Lassiaille

S.M.T. (Surrounding Matter Theory), an alternative theory to dark matter, is presented. It is based on a modification of Newton's law. This modification is done by multiplying a Newtonian potential by a given factor, which is varying with local distribution of matter, at the location where the gravitational force is exerted. With this new equation the model emphasizes that a gravitational force is roughly inversely proportional to mass density at the location where this force is applied. After presentation of the model, its dynamic is quickly applied to cosmology and galaxy structure. Some possible caveats of the model are identified. But the simple mechanism described above suggests the idea of a straightforward solution to the following issues: virial theorem mystery, the bullet cluster (“1E 0657-56” galaxy clusters) issue, the strong relative velocity of its subclusters, the value of cosmological critical density, the fine tuning issue, and expansion acceleration. Nucleosynthesis is not explained and would require a different model for radiation era. But a de Sitter Universe is predicted, this means that the spatial curvature, K, is 0, and today's deceleration parameter, q, is -1. The predicted time since last scattering is 68 h-1Gyr. With this value SMT explains heterogeneities of large scale structure and galaxy formation. Each kind of experimental speed profiles are retrieved by a simulation of a virtual galaxy. In the simulations, ring galaxies are generated by SMT dynamic itself, without the help of any particular external event. Those studies give motivation for scientific comparisons with experimental data.

2020 ◽  
Vol 498 (2) ◽  
pp. 1765-1785 ◽  
Author(s):  
Andreea S Font ◽  
Ian G McCarthy ◽  
Robert Poole-Mckenzie ◽  
Sam G Stafford ◽  
Shaun T Brown ◽  
...  

ABSTRACT We introduce the Assembly of high-ResoluTion Eagle-simulations of MIlky Way-type galaxieS (artemis) simulations, a new set of 42 zoomed-in, high-resolution (baryon particle mass of $\approx 2\times 10^4 \, {\rm M}_{\odot }\, h^{-1}$), hydrodynamical simulations of galaxies residing in haloes of Milky Way mass, simulated with the eagle galaxy formation code with re-calibrated stellar feedback. In this study, we analyse the structure of stellar haloes, specifically the mass density, surface brightness, metallicity, colour, and age radial profiles, finding generally very good agreement with recent observations of local galaxies. The stellar density profiles are well fitted by broken power laws, with inner slopes of ≈−3, outer slopes of ≈−4, and break radii that are typically ≈20–40 kpc. The break radii generally mark the transition between in situ formation and accretion-driven formation of the halo. The metallicity, colour, and age profiles show mild large-scale gradients, particularly when spherically averaged or viewed along the major axes. Along the minor axes, however, the profiles are nearly flat, in agreement with observations. Overall, the structural properties can be understood by two factors: that in situ stars dominate the inner regions and that they reside in a spatially flattened distribution that is aligned with the disc. Observations targeting both the major and minor axes of galaxies are thus required to obtain a complete picture of stellar haloes.


Theoretical and experimental arguments suggest that the mean mass density of our universe is close to the closure value and that most of the mass in the universe consists of weakly interacting non-baryonic particles. Among the plethora of candidates that have been proposed as the dark matter, the neutrino remains the only particle known to exist, even though the issue of a neutrino mass remains unresolved. It was shown several years ago that neutrinos alone cannot provide the dark matter because physical processes in the early universe would have wiped out primordial density fluctuations on the scale of galaxies and below. The idea that cosmic strings or textures may seed galaxy formation in a neutrino-dominated universe has not yet been demonstrated to be viable. On the other hand, a model in which the bulk of the dark matter is cold and neutrinos with a mass of ca . 10 eV provide a ca . 30% contribution can, in principle, overcome many of the objections against the standard cold dark matter cosmogony. Although subject to the usual ‘fine-tuning’ criticism, these mixed dark matter models represent the best cosmological argument in favour of a non-zero rest mass for the neutrino.


2007 ◽  
Vol 3 (S245) ◽  
pp. 471-476
Author(s):  
Aprajita Verma ◽  
Matthew Lehnert ◽  
Natascha Förster Schreiber ◽  
Malcolm Bremer ◽  
Laura Douglas

AbstractHigh redshift galaxies play a key role in our developing understanding of galaxy formation and evolution. Since such galaxies are being studied within a Gyr of the big bang, they provide a unique probe of the physics of one of the first generations of large-scale star-formation. We have performed a complete statistical study of the physical properties of a robust sample of z~5 UV luminous galaxies selected using the Lyman-break technique. The characteristic properties of this sample differ from LBGs at z~3 of comparable luminosity in that they are a factor of ten less massive (~few×109 M⊙) and the majority (~70%) are considerably younger (<100Myr). Our results support no more than a modest decline in the global star formation rate density at high redshifts and suggest that ~1% of the stellar mass density of the universe had already assembled at z~5. The constraint derived for the latter is affected by their young ages and short duty cycles which imply existing z~5 LBG samples may be highly incomplete. These intense starbursts have high unobscured star formation rate surface densities (~100s M⊙ yr−1 kpc−2), suggesting they drive outflows and winds that enrich the intra- and inter-galactic media with metals. These properties imply that the majority of z~5 LBGs are in formation meaning that most of their star-formation has likely occurred during the last few crossing times. They are experiencing their first (few) generations of large-scale star formation and are accumulating their first significant stellar mass. As such, z~5 LBGs are the likely progenitors of the spheroidal components of present-day massive galaxies (supported by their high stellar mass surface densities and their core phase-space densities).


1985 ◽  
Vol 19 (1) ◽  
pp. 668-677
Author(s):  
Bernard J. T. Jones

This article surveys the literature from July 1981 to June 1984. It is neither possible nor desirable to refer to all papers on the subject, and accordingly only papers that are generally representative of some particular idea are explicitly mentioned. Galaxy Formation by its very nature has considerable overlap with other areas of cosmology such as the anisotropy of the cosmic background radiation, the question of the mass density of the universe, the nature of the large scale clustering, and detailed observations of galaxies. These are all topics covered by other reports to Commission 47 and the reader will therefore find only scant attention paid here to these important subjects.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter provides a few examples of representations of the universe on a large scale—a first step in constructing a cosmological model. It first discusses the Copernican principle, which is an approximation/hypothesis about the matter distribution in the observable universe. The chapter then turns to the cosmological principle—a hypothesis about the geometry of the Riemannian spacetime representing the universe, which is assumed to be foliated by 3-spaces labeled by a cosmic time t which are homogeneous and isotropic, that is, ‘maximally symmetric’. After a discussion on maximally symmetric space, this chapter considers spacetimes with homogenous and isotropic sections. Finally, this chapter discusses Milne and de Sitter spacetimes.


Author(s):  
Marta B. Silva ◽  
Ely D. Kovetz ◽  
Garrett K. Keating ◽  
Azadeh Moradinezhad Dizgah ◽  
Matthieu Bethermin ◽  
...  

AbstractThis paper outlines the science case for line-intensity mapping with a space-borne instrument targeting the sub-millimeter (microwaves) to the far-infrared (FIR) wavelength range. Our goal is to observe and characterize the large-scale structure in the Universe from present times to the high redshift Epoch of Reionization. This is essential to constrain the cosmology of our Universe and form a better understanding of various mechanisms that drive galaxy formation and evolution. The proposed frequency range would make it possible to probe important metal cooling lines such as [CII] up to very high redshift as well as a large number of rotational lines of the CO molecule. These can be used to trace molecular gas and dust evolution and constrain the buildup in both the cosmic star formation rate density and the cosmic infrared background (CIB). Moreover, surveys at the highest frequencies will detect FIR lines which are used as diagnostics of galaxies and AGN. Tomography of these lines over a wide redshift range will enable invaluable measurements of the cosmic expansion history at epochs inaccessible to other methods, competitive constraints on the parameters of the standard model of cosmology, and numerous tests of dark matter, dark energy, modified gravity and inflation. To reach these goals, large-scale structure must be mapped over a wide range in frequency to trace its time evolution and the surveyed area needs to be very large to beat cosmic variance. Only a space-borne mission can properly meet these requirements.


2020 ◽  
Vol 501 (2) ◽  
pp. 1755-1765
Author(s):  
Andrew Pontzen ◽  
Martin P Rey ◽  
Corentin Cadiou ◽  
Oscar Agertz ◽  
Romain Teyssier ◽  
...  

ABSTRACT We introduce a new method to mitigate numerical diffusion in adaptive mesh refinement (AMR) simulations of cosmological galaxy formation, and study its impact on a simulated dwarf galaxy as part of the ‘EDGE’ project. The target galaxy has a maximum circular velocity of $21\, \mathrm{km}\, \mathrm{s}^{-1}$ but evolves in a region that is moving at up to $90\, \mathrm{km}\, \mathrm{s}^{-1}$ relative to the hydrodynamic grid. In the absence of any mitigation, diffusion softens the filaments feeding our galaxy. As a result, gas is unphysically held in the circumgalactic medium around the galaxy for $320\, \mathrm{Myr}$, delaying the onset of star formation until cooling and collapse eventually triggers an initial starburst at z = 9. Using genetic modification, we produce ‘velocity-zeroed’ initial conditions in which the grid-relative streaming is strongly suppressed; by design, the change does not significantly modify the large-scale structure or dark matter accretion history. The resulting simulation recovers a more physical, gradual onset of star formation starting at z = 17. While the final stellar masses are nearly consistent ($4.8 \times 10^6\, \mathrm{M}_{\odot }$ and $4.4\times 10^6\, \mathrm{M}_{\odot }$ for unmodified and velocity-zeroed, respectively), the dynamical and morphological structure of the z = 0 dwarf galaxies are markedly different due to the contrasting histories. Our approach to diffusion suppression is suitable for any AMR zoom cosmological galaxy formation simulations, and is especially recommended for those of small galaxies at high redshift.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Fuyong Xing ◽  
Yuanpu Xie ◽  
Xiaoshuang Shi ◽  
Pingjun Chen ◽  
Zizhao Zhang ◽  
...  

Abstract Background Nucleus or cell detection is a fundamental task in microscopy image analysis and supports many other quantitative studies such as object counting, segmentation, tracking, etc. Deep neural networks are emerging as a powerful tool for biomedical image computing; in particular, convolutional neural networks have been widely applied to nucleus/cell detection in microscopy images. However, almost all models are tailored for specific datasets and their applicability to other microscopy image data remains unknown. Some existing studies casually learn and evaluate deep neural networks on multiple microscopy datasets, but there are still several critical, open questions to be addressed. Results We analyze the applicability of deep models specifically for nucleus detection across a wide variety of microscopy image data. More specifically, we present a fully convolutional network-based regression model and extensively evaluate it on large-scale digital pathology and microscopy image datasets, which consist of 23 organs (or cancer diseases) and come from multiple institutions. We demonstrate that for a specific target dataset, training with images from the same types of organs might be usually necessary for nucleus detection. Although the images can be visually similar due to the same staining technique and imaging protocol, deep models learned with images from different organs might not deliver desirable results and would require model fine-tuning to be on a par with those trained with target data. We also observe that training with a mixture of target and other/non-target data does not always mean a higher accuracy of nucleus detection, and it might require proper data manipulation during model training to achieve good performance. Conclusions We conduct a systematic case study on deep models for nucleus detection in a wide variety of microscopy images, aiming to address several important but previously understudied questions. We present and extensively evaluate an end-to-end, pixel-to-pixel fully convolutional regression network and report a few significant findings, some of which might have not been reported in previous studies. The model performance analysis and observations would be helpful to nucleus detection in microscopy images.


1999 ◽  
Vol 16 (1) ◽  
pp. 95-99 ◽  
Author(s):  
J. Michael Shull ◽  
Steven V. Penton ◽  
John T. Stocke

AbstractThe low-redshift Lyα forest of absorption lines provides a probe of large-scale baryonic structures in the intergalactic medium, some of which may be remnants of physical conditions set up during the epoch of galaxy formation. We discuss our recent Hubble Space Telescope (HST) observations and interpretation of low-z Lyα clouds toward nearby Seyferts and QSOs, including their frequency, space density, estimated mass, association with galaxies, and contribution to Ωb. Our HST/GHRS detections of ∼ 70 Lyα absorbers with Nhi ≥ 1012·6 cm−2 along 11 sightlines covering pathlength Δ(cz) = 114,000 km s−1 show f (>Nhi) α Nhi−0·63±0·04 and a line frequency dN/dz = 200 ± 40 for Nhi > 1012·6 cm−2 (one every 1500 km s−1 of redshift). A group of strong absorbers toward PKS 2155–304 may be associated with gas (400–800) kpc from four large galaxies, with low metallicity (≤0·003 solar) and D/H ≤ 2 × 10−4. At low-z, we derive a metagalactic ionising radiation field from AGN of J0 = × 10−23 erg cm−2 s−1 Hz−1 sr−1 and a Lyα-forest baryon density Ωb =(0·008 ± 0·004)[J−23N14b100]½ for clouds of characteristic size b = (100 kpc)b100.


1988 ◽  
Vol 130 ◽  
pp. 43-50
Author(s):  
Nick Kaiser

Fluctuations in the microwave background will have been imprinted at z ≃ 1000, when the photons and the plasma decoupled. On angular scales greater than a few degrees these fluctuations provide a clear view of any primordial density perturbations, and therefore a clean test of theories which invoke such fluctuations from which to form the structure we see in the universe. On smaller angular scales the predictions are less certain: reionization of the gas may modify the spectrum of the primordial fluctuations, and secondary fluctuations may be generated.Here I shall review some recent theoretical developments. A brief survey is made of the currently popular theories for the primordial perturbations, with emphasis on the predictions for large scale anisotropy. One major uncetainty in the predictions arises from the normalisation of the fluctuations to e.g. galaxy clustering, and much attention is given to the question of ‘biased’ galaxy formation. The effect of reionization on the primordial fluctuations is discussed, as is the anisotropy generated from scattering off hot gas in clusters, groups and galaxies.


Sign in / Sign up

Export Citation Format

Share Document