scholarly journals Nickel-titanium pseudo-elastic behavior under equi-biaxial dynamic loading conditions

2018 ◽  
Vol 183 ◽  
pp. 02054
Author(s):  
Pierre Quillery ◽  
Bastien Durand ◽  
Olivier Hubert ◽  
Han Zhao

Shape memory alloys (SMA) undergo a solid-solid phase transformation called martensitic transformation, involving a "high temperature" phase (austenite) and a "low temperature" phase (martensite). The stress-strain pseudo-elastic behavior of a nickel-titanium under equi-biaxial dynamic compression is measured thanks to a new home-made impact testing set-up using split Hopkinson bars. The use of thermal and optical cameras allows strain and heating sources fields to be identified. The stress field is estimated by the combination of the strain gauges information placed on bars, and a finite element analysis of the specimen. Experimental average stress-strain behavior and thermal emission are finally compared to the results of a finite difference axisymmetric model where the constitutive law is given by a fully coupled stochastic multi scale model.

2013 ◽  
Vol 80 (2) ◽  
Author(s):  
Ranena V. Ponce F. ◽  
Márcio A. Murad ◽  
Sidarta A. Lima

We propose a new two-scale model to compute the swelling pressure in colloidal systems with microstructure sensitive to pH changes from an outer bulk fluid in thermodynamic equilibrium with the electrolyte solution in the nanopores. The model is based on establishing the microscopic pore scale governing equations for a biphasic porous medium composed of surface charged macromolecules saturated by the aqueous electrolyte solution containing four monovalent ions (Na+,Cl-,H+,OH-). Ion exchange reactions occur at the surface of the particles leading to a pH-dependent surface charge density, giving rise to a nonlinear Neumann condition for the Poisson–Boltzmann problem for the electric double layer potential. The homogenization procedure, based on formal matched asymptotic expansions, is applied to up-scale the pore-scale model to the macroscale. Modified forms of Terzaghi's effective stress principle and mass balance of the solid phase, including a disjoining stress tensor and electrochemical compressibility, are rigorously derived from the upscaling procedure. New constitutive laws are constructed for these quantities incorporating the pH-dependency. The two-scale model is discretized by the finite element method and applied to numerically simulate a free swelling experiment induced by chemical stimulation of the external bulk solution.


2017 ◽  
Vol 10 (3) ◽  
pp. 547-567 ◽  
Author(s):  
D. A. GUJEL ◽  
C. S. KAZMIERCZAK ◽  
J. R. MASUERO

ABSTRACT This work analyses the methodology "A" (item A.4) employed by the Brazilian Standard ABNT 8522 (ABNT, 2008) for determining the stress-strain behavior of cylindrical specimens of concrete, presenting considerations about possible enhancements aiming it use for concretes with recycled aggregates with automatic test equipment. The methodology specified by the Brazilian Standard presents methodological issues that brings distortions in obtaining the stress-strain curve, as the use of a very limited number of sampling points and by inducing micro cracks and fluency in the elastic behavior of the material due to the use of steady stress levels in the test. The use of a base stress of 0.5 MPa is too low for modern high load test machines designed do high strength concrete test. The work presents a discussion over these subjects, and a proposal of a modified test procedure to avoid such situations.


Author(s):  
Neil S. Bailey ◽  
Yung C. Shin

A predictive laser hardening model for industrial parts with complex geometric features has been developed and used for optimization of hardening processes. A transient three-dimensional thermal model is combined with a three-dimensional kinetic model for steel phase transformation and solved in order to predict the temperature history and solid phase history of the workpiece while considering latent heat of phase transformation. Further, back-tempering is also added to the model to determine the phase transformation during multitrack laser hardening. The integrated model is designed to accurately predict temperature, phase distributions and hardness inside complex geometric domains. The laser hardening parameters for two industrial workpieces are optimized for two different industrial laser systems using this model. Experimental results confirm the validity of predicted results.


1954 ◽  
Vol 21 (1) ◽  
pp. 63-70
Author(s):  
E. H. Lee ◽  
S. J. Tupper

Abstract The G. I. Taylor dynamic compression test consists of firing a cylinder of the material to be tested at a target of hardened armor plate, and deducing the dynamic yield stress from the resulting deformation. In the interpretation of the results, interest is concentrated on the wave front of initial plastic straining. The present paper attempts the theoretical determination of the entire strain distribution in such a test cylinder of nickel-chrome steel, this material being chosen since the dynamic influence on the stress-strain relation is likely to be small, thus permitting the static relation to be used in the theory. Strain distributions deduced by two theoretical approaches compare satisfactorily with the distribution of strain obtained in such a dynamic compression test, thus justifying the assumption for this material at the speed considered. The treatment of this problem requires a theory of the propagation of plastic waves, which is developed in this paper, for the particular type of stress-strain curve pertaining to the high-strength alloy steel tested.


1995 ◽  
Vol 50 (8) ◽  
pp. 742-748 ◽  
Author(s):  
M. Grottel ◽  
A. Kozak ◽  
Z. Pająk

Abstract Proton and fluorine NMR linewidths, second moments, and spin-lattice relaxation times of polycrystalline [C(NH2)3]2SbF5 and C(NH2)3SbF6 were studied in a wide temperature range. For the pentafluoroantimonate, C3-reorientation of the guanidinium cation and C4-reorientation of the SbF5 anion were revealed and their activation parameters determined. The dynamical inequivalence of the two guanidinium cations was evidenced. For the hexafluoroantimonate, two solid-solid phase transitions were found. In the low temperature phase the guanidinium cation undergoes C3 reorien­ tation while the SbF6 anion reorients isotropically. The respective activation parameters were derived. At high temperatures new ionic plastic phases were evidenced.


1974 ◽  
Vol 13 (69) ◽  
pp. 457-471 ◽  
Author(s):  
W. D. Hibler

A comparison of mesoscale strain measurements with the atmospheric pressure field and the wind velocity field indicate that the ice divergence rate and vorticity follow the local pressure and wind divergence with significant correlation. For low atmospheric pressures and converging winds the divergence rate was found to be negative with the vorticity being counter-clockwise. The inverse behavior was observed for high pressures and diverging winds. This behavior was shown to agree with predictions based upon the infinite boundary solution of a linearized drift theory in the absence of gradient current effects and using the constitutive law proposed by Glen (1970) for pack ice. The best least-squares values of the constitutive law parametersηandζwere found to be ≈ 1012kg/s. Using typical divergence rates these values yield compressive stresses of the magnitude of 105N/m which are similar to values suggested by the Parmerter and Coon (1972) ridge model. In general, the infinite boundary solution of the linear drift equation indicates that in a low-pressure region that is reasonably localized in space, the ice would be expected to converge for high compactness (winter) and diverge for low compactness (summer).Calculations were also carried out using a more general linear visco-elastic constitutive law that includes memory effects and which includes a generalized Hooke’s law as well as the Glen law as special cases. A best fit of this more general calculation with strain measurements indicates overall a better agreement with viscous behavior than with elastic behavior, with the frequency behavior of the estimated “viscosities” similar to the Glen law behavior at temporal frequencies less than ≈ 0.01 h−1.


Sign in / Sign up

Export Citation Format

Share Document