scholarly journals CERN Tape Archive — from development to production deployment

2019 ◽  
Vol 214 ◽  
pp. 04015
Author(s):  
Michael C. Davis ◽  
Vladímir Bahyl ◽  
Germán Cancio ◽  
Eric Cano ◽  
Julien Leduc ◽  
...  

The first production version of the CERN Tape Archive (CTA) software is planned to be released during 2019. CTA is designed to replace CASTOR as the CERN tape archive solution, to face the scalability and performance challenges arriving with LHC Run–3. In this paper, we describe the main commonalities and differences between CTA and CASTOR. We outline the functional enhancements and integration steps required to add the CTA tape back-end to an EOS disk storage system. We present and discuss the different deployment and migration scenarios for replacing the five CASTOR instances at CERN, including a description of how the File Transfer Service (FTS) will interface with EOS and CTA.

Technologies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 28
Author(s):  
Hossam A. Gabbar ◽  
Ahmed M. Othman ◽  
Muhammad R. Abdussami

The evolving global landscape for electrical distribution and use created a need area for energy storage systems (ESS), making them among the fastest growing electrical power system products. A key element in any energy storage system is the capability to monitor, control, and optimize performance of an individual or multiple battery modules in an energy storage system and the ability to control the disconnection of the module(s) from the system in the event of abnormal conditions. This management scheme is known as “battery management system (BMS)”, which is one of the essential units in electrical equipment. BMS reacts with external events, as well with as an internal event. It is used to improve the battery performance with proper safety measures within a system. Therefore, a safe BMS is the prerequisite for operating an electrical system. This report analyzes the details of BMS for electric transportation and large-scale (stationary) energy storage. The analysis includes different aspects of BMS covering testing, component, functionalities, topology, operation, architecture, and BMS safety aspects. Additionally, current related standards and codes related to BMS are also reviewed. The report investigates BMS safety aspects, battery technology, regulation needs, and offer recommendations. It further studies current gaps in respect to the safety requirements and performance requirements of BMS by focusing mainly on the electric transportation and stationary application. The report further provides a framework for developing a new standard on BMS, especially on BMS safety and operational risk. In conclusion, four main areas of (1) BMS construction, (2) Operation Parameters, (3) BMS Integration, and (4) Installation for improvement of BMS safety and performance are identified, and detailed recommendations were provided for each area. It is recommended that a technical review of the BMS be performed for transportation electrification and large-scale (stationary) applications. A comprehensive evaluation of the components, architectures, and safety risks applicable to BMS operation is also presented.


2019 ◽  
Vol 214 ◽  
pp. 04033
Author(s):  
Hervé Rousseau ◽  
Belinda Chan Kwok Cheong ◽  
Cristian Contescu ◽  
Xavier Espinal Curull ◽  
Jan Iven ◽  
...  

The CERN IT Storage group operates multiple distributed storage systems and is responsible for the support of the infrastructure to accommodate all CERN storage requirements, from the physics data generated by LHC and non-LHC experiments to the personnel users' files. EOS is now the key component of the CERN Storage strategy. It allows to operate at high incoming throughput for experiment data-taking while running concurrent complex production work-loads. This high-performance distributed storage provides now more than 250PB of raw disks and it is the key component behind the success of CERNBox, the CERN cloud synchronisation service which allows syncing and sharing files on all major mobile and desktop platforms to provide offline availability to any data stored in the EOS infrastructure. CERNBox recorded an exponential growth in the last couple of year in terms of files and data stored thanks to its increasing popularity inside CERN users community and thanks to its integration with a multitude of other CERN services (Batch, SWAN, Microsoft Office). In parallel CASTOR is being simplified and transitioning from an HSM into an archival system, focusing mainly in the long-term data recording of the primary data from the detectors, preparing the road to the next-generation tape archival system, CTA. The storage services at CERN cover as well the needs of the rest of our community: Ceph as data back-end for the CERN OpenStack infrastructure, NFS services and S3 functionality; AFS for legacy home directory filesystem services and its ongoing phase-out and CVMFS for software distribution. In this paper we will summarise our experience in supporting all our distributed storage system and the ongoing work in evolving our infrastructure, testing very-dense storage building block (nodes with more than 1PB of raw space) for the challenges waiting ahead.


2004 ◽  
Vol 834 ◽  
Author(s):  
Akiyoshi Itoh

ABSTRACTIn this report, the newly developed three-dimensional magneto-optical (MO) recording scheme and the experimental results are reported. A part of this work has been done as the national project of 3D-MO (3-dimensional MO) project. It started at September 1998 and ended March 2002 as a part of the national project “Nanometer-Scale Optical High Density Disk Storage System” and aimed at achieving 100 Gb/in2 in storage density. Three-dimensional MO recording is one of the prosperous candidates of next generation ultra high density recording. Magnetic amplifying MO system (MAMMOS) is employed for achieving the novel three-dimensional MO recording. Double-MAMMOS scheme consists of 2-recording layers of differing compensation temperature (Tcomp ) and one readout layer was proposed and discussed.With write/read test it is succeeded to show the results corresponding to a 100 Gb/in2 (50 Gb/in2 × 2) recording density. We also proposed and showed results of simulations of a new type of Double-MAMMOS in which the recording layers can hold quadri-valued information by single writing process.


2021 ◽  
Author(s):  
José Luis Saboin

Using Enterprise Survey data, this study describes the characteristics of current Venezuelan firms the survivors of one of the deepest economic contractions of modern historyacross different dimensions, such as access to infrastructure services, firms investment and financing, labor and skills, foreign trade, the legal environment, and firms innovation and performance. The study identifies the main challenges faced by the surviving firms (notably: macroeconomic and political instability, unreliability of basic services, lack of credit, and migration), while identifying some of the opportunities for these firms to exploit if a comprehensive recovery strategy for the country were to be implemented. In this sense, I find that the representative Venezuelan survivor firm has managed to internationalize through several channels (foreign ownership, exports, and international quality certifications), as well as to match skills with current business and market demands and keep innovating. The study also briefly analyzes some of the traditional determinants of (labor) productivity at the firm level, bringing the most interesting aspects to the fore so they can be explored further in more topic-focused research.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2159 ◽  
Author(s):  
Sung Hoon Baek ◽  
Ki-Woong Park

Flash-based storage is considered to be a de facto storage module for sustainable Internet of things (IoT) platforms under a harsh environment due to its relatively fast speed and operational stability compared to disk storage. Although their performance is considerably faster than disk-based mechanical storage devices, the read and write latency still could not catch up with that of Random-access memory (RAM). Therefore, RAM could be used as storage devices or systems for time-critical IoT applications. Despite such advantages of RAM, a RAM-based storage system has limitations in its use for sustainable IoT devices due to its nature of volatile storage. As a remedy to this problem, this paper presents a durable hybrid RAM disk enhanced with a new read interface. The proposed durable hybrid RAM disk is designed for sustainable IoT devices that require not only high read/write performance but also data durability. It includes two performance improvement schemes: rapid resilience with a fast initialization and direct byte read (DBR). The rapid resilience with a fast initialization shortens the long booting time required to initialize the durable hybrid RAM disk. The new read interface, DBR, enables the durable hybrid RAM disk to bypass the disk cache, which is an overhead in RAM-based storages. DBR performs byte–range I/O, whereas direct I/O requires block-range I/O; therefore, it provides a more efficient interface than direct I/O. The presented schemes and device were implemented in the Linux kernel. Experimental evaluations were performed using various benchmarks at the block level till the file level. In workloads where reads and writes were mixed, the durable hybrid RAM disk showed 15 times better performance than that of Solid-state drive (SSD) itself.


Sign in / Sign up

Export Citation Format

Share Document