scholarly journals Fusion Hindrance and Pauli Blocking in 58Ni + 64Ni

2019 ◽  
Vol 223 ◽  
pp. 01062
Author(s):  
Alberto M. Stefanini ◽  
Giovanna Montagnoli ◽  
Mirco Del Fabbro ◽  
Giulia Colucci ◽  
Petra Čolović ◽  
...  

58Ni +64Ni is the first case where the influence of positive Q-value transfer channels on sub-barrier fusion was evidenced, in a very well known experiment by Beckerman et al., by comparing with the two systems 58Ni + 58Ni and 64Ni+64Ni. Subsequent measurements on 64Ni + 64Ni showed that fusion hindrance is clearly present in this case. On the other hand, no indication of hindrance can be observed for 58Ni + 64Ni down to the measured level of 0.1 mb. In the present experiment the excitation function has been extended by two orders of magnitude downward. The cross sections for 58Ni + 64Ni continue decreasing very smoothly below the barrier, down to '1 µb. The logarithmic slope of the excitation function increases slowly, showing a tendency to saturate at the lowest energies. No maximum of the astrophysical S -factor is observed. Coupled-channels (CC) calculations using a Woods-Saxon potential and includinginelastic excitations only, underestimate the sub-barrier cross sections by a large amount. Good agreement is found by adding two-neutron transfer couplings to a schematical level. This behaviour is quite different from what already observed for 64Ni+ 64Ni (no positive Q-value transfer channels available), where a clear low-energy maximum of the S -factorappears, and whose excitation function is overestimated by a standard Woods-Saxon CC calculation. No hindrance effect is observed in 58Ni+ 64Ni in the measured energy range. This trend at deep sub-barrier energies reinforces the recent suggestion that the availability of several states following transfer with Q>0, effectively counterbalances the Pauli repulsion that, in general, is predicted to reduce tunneling probability inside the Coulomb barrier.

2019 ◽  
Vol 223 ◽  
pp. 01013
Author(s):  
Giulia Colucci ◽  
Giovanna Montagnoli ◽  
Alberto M. Stefanini ◽  
Kouichi Hagino ◽  
Antonio Caciolli ◽  
...  

A detailed comparative study of the sub-barrier fusion of the two near-by systems 36S+50Ti,51V was performed at the National Laboratories of Legnaro (INFN). Aim of the experiment was the investigation of possible effects of the non-zero spin of the ground state of the 51V nucleus on the sub-barrier excitation function, and in particular on the shape of the barrier distribution. The results sh w that the two measured excitation functions are very similar down to the level of 20 - 30 μb. The same is observed for the two barrier distributions. Coupled-channels calculations have been performed and are in good agreement with the experimental data. This result indicates that the low-lying levels in 51V can be interpreted in the weak-coupling scheme, that is, 51V(I) = 50Ti(2+)⊗ p(1 f7/2).


2009 ◽  
Vol 24 (11) ◽  
pp. 2191-2197 ◽  
Author(s):  
T. MATSUMOTO ◽  
T. EGAMI ◽  
K. OGATA ◽  
Y. ISERI ◽  
M. KAMIMURA ◽  
...  

We present analyses of breakup effects of 6 He on the elastic scattering by the continuum-discretized coupled-channels method, in which the reaction system is described as a four-body model, n+n+4 He +target. In this analysis, three-body breakup continuum of 6 He is discretized by daiagonalizing the internal Hamiltonian of 6 He in a space spanned by the Gaussian basis functions. The calculated elastic cross sections are in good agreement with the experimental data, which shows that nuclear and Coulomb breakup effects are significant.


1974 ◽  
Vol 52 (23) ◽  
pp. 2422-2435 ◽  
Author(s):  
R. De Swiniarski ◽  
A. Genoux-Lubain ◽  
G. Bagieu ◽  
J. F. Cavaignac

Cross sections were measured for inelastic scattering of 30 MeV protons from 19F, 20Ne, 21Ne, and22Ne. The cross sections of the ground state rotational band in these nuclei were analyzed in the coupled channels formalism and yield further evidence for a large hexadecapole deformation in 19F (β4 = 0.14 ± 0.04) and in 20Ne (β4 = 0.28 ± 0.05) in good agreement with several recent proton inelastic scattering experiments. These calculations show also that the Y4 moment is small or close to zero in 21Ne and 22Ne (β4 ≤ 0.05). The analysis of the available 19F cross section in the DWBA formalism shows evidence for a large and significant octupole transition strength for the 1.35 MeV (5/2−) (3.6 W.u.), the 5.43 MeV (7/2−) state (6.70 W.u.), and the 5.63 MeV (5/2−) state (3.60 W.u.). The measured transition strengths are generally in disagreement with recent low energy (α, α′) or (d, d′) results but also with the earlier Coulomb excitation measurements. Thus, we confirm that a major discrepancy still exists between inelastic scattering and Coulomb excitation of the octupole transition strength to several states in 19F but mainly to the 1.35 MeV (5/2−) state as was already pointed out some time ago from a low energy inelastic proton scattering experiment. On a mesuré les sections efficaces pour la diffusion inélastique de protons de 30 MeV excitant les noyaux 19F, 20Ne, 21Ne et 22Ne.


Author(s):  
Charles J. Oswald

Measurements made on a long span reinforced concrete arch culvert under 7.3 m (24 ft) of silty clay backfill were compared with results from finite-element analyses of the soil-structure system using the CANDE finite-element code. The culvert strains and deflections and the soil pressure on the culvert were measured during construction and during the following 2.5 years at three instrumented cross sections. The CANDE program was modified to account for the effects of concrete creep and shrinkage strains after it was noted that the measured postconstruction culvert deflection and strains increased significantly whereas the measured soil pressure on the culvert remained relatively constant. Good agreement was generally obtained between measured and calculated values of the culvert strain and deflection and the soil pressure during the entire monitoring period after the code was modified.


1976 ◽  
Vol 54 (7) ◽  
pp. 748-752 ◽  
Author(s):  
B. Niewitecka ◽  
L. Krause

The disorientation of 62P1/2 cesium atoms, induced in collisions with noble gas atoms in their ground states, was systematically investigated by monitoring the depolarization of cesium resonance fluorescence in relation to noble gas pressures. The Cs atoms, contained together with a buffer gas in a fluorescence cell and located in zero magnetic field, were excited and oriented by irradiation with circularly polarized 8943 Å resonance radiation, and the resonance fluorescence, emitted in an approximately backward direction, was analyzed with respect to circular polarization. The experiments yielded the following disorientation cross sections which have been corrected for the effects of nuclear spin: Cs–He: 4.9 ± 0.7 Å2; Cs–Ne: 2.1 ± 0.3 Å2; Cs–Ar: 5.6 ± 0.8 Å2; Cs–Kr: 5.8 ± 0.9 Å2; Cs–Xe: 6.3 ± 0.9 Å2. The results are in good agreement with most of the available zero-field and low-field data.


2011 ◽  
Vol 20 (04) ◽  
pp. 953-957 ◽  
Author(s):  
P. HUU-TAI CHAU

An overview of calculations performed within the Continuum Discretized Coupled Channels (CDCC) approach for deuteron induced reactions is given. We briefly present an extension of the CDCC formalism which accounts for the target excitations allowing us to determine ( d , d ') cross sections off deformed nuclei. We compare some calculated inelastic cross sections with experimental data. Then it is shown that the CDCC formalism can also be a useful tool to determine ( d , p ) cross sections. This point is illustrated with 54 Cr ( d , p )55 Cr reactions.


2016 ◽  
Author(s):  
Anna Totterdill ◽  
Tamás Kovács ◽  
Wuhu Feng ◽  
Sandip Dhomse ◽  
Christopher J. Smith ◽  
...  

Abstract. Fluorinated compounds such as NF3 and C2F5Cl (CFC-115) are characterised by very large global warming potentials (GWPs) which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross-sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are in good agreement with previous measurements, whereas the resulting radiative forcings and efficiencies are, on average, around 10 % larger. A whole atmosphere chemistry-climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (616 ± 34) years and (492 ± 22) years, respectively. The GWPs for NF3 are estimated to be 14 600, 19 400 and 21 400 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6120, 8060 and 8630 over 20, 100 and 500 years, respectively.


2018 ◽  
Vol 620 ◽  
pp. A188 ◽  
Author(s):  
Valdas Jonauskas

Electron-impact single- and double-ionization cross sections and Maxwellian rate coefficients are presented for the carbon atom. Scaling factors are introduced for the electron-impact excitation and ionization cross sections obtained in the distorted wave (DW) approximation. It is shown that the scaled DW cross sections provide good agreement with measurements for the single ionization of the C atom and C1+ ion. The direct double-ionization (DDI) process is studied using a multi-step approach. Ionization–ionization, excitation–ionization–ionization, and ionization–excitation–ionization branches are analyzed. It is demonstrated that the three-step processes contribute ≼40% of the total DDI cross sections for the case where one of the electrons takes all of the excess energy after the first ionization process.


1996 ◽  
Vol 74 (5-6) ◽  
pp. 230-235 ◽  
Author(s):  
D. V. Rao ◽  
R. Cesareo ◽  
G. E. Gigante

LL, Lα, Lβ, and Lγ X-ray fluorescence cross sections for Pr, Sm, Gd, Dy, Ho, Er, Yb, Pt Au, and Pb were measured at the excitation energy 16.58 keV. An X-ray tube and a secondary excitor system was used instead of radioisotopes for the measurements. Experimental cross sections are compared with the theoretical estimates based on relativistic Dirac–Hartree–Slater theory. Average L-shell fluorescence yields [Formula: see text] are deduced using the present experimental cross sections and the theoretical subshell photoionization cross sections. The derived average fluorescence yields are fitted by least squares to polynomials in Z of the form ΣnanZn and compared with theoretical and earlier fitted values. Good agreement is observed ' between the experimental results and the theoretical estimates based on relativistic Dirac–Hartree–Slater theory.


2020 ◽  
pp. 148-153
Author(s):  
A.N. Vodin ◽  
O.S. Deiev ◽  
I.S. Timchenko ◽  
S.N. Olejnik ◽  
A.S. Kachan ◽  
...  

The flux-weighted averaged over the energy range of bremsstrahlung spectrum from reaction threshold up to the maximum energy of γ-ray cross-sections <σ(E)> of the 93Nb(γ,n)92mNb and 93Nb(γ,n)92tNb photonuclear reactions were determined by the gamma-activation method within the end-point bremsstrahlung energies Еmax = 36…91 MeV. Activation of 93Nb targets has been done by a bremsstrahlung flux using an electron beam at the linear accelerator LUE-40 at RDC "Accelerator" NSC KIPT. The γ-ray spectra of irradiated targets were registered using the HPGe detector with an energy resolution of 1.8 keV for the 1332 keV line 60Co. To control the bremsstrahlung flux we used natMo witness-targets and a reaction cross-section of 100Mo(γ,n)99Mo. Obtained experimental cross-sections <σ(E)> of the studied reactions are in good agreement with the theoretical values calculated within TALYS 1.9 code and the results of other authors. The averaged cross-sections <σ(E)> of the 93Nb(γ,n)92mNb and 93Nb(γ,n)92tNb reactions in the energy range 35...45 MeV and > 70 MeV were obtained for the first time.


Sign in / Sign up

Export Citation Format

Share Document