scholarly journals Exploring the Twilight Zone: A Multi-Sensor Approach

2020 ◽  
Vol 237 ◽  
pp. 07015
Author(s):  
Jonatan da Silva ◽  
Fernando G. Morais ◽  
Marco A. Franco ◽  
Fábio J. S. Lopes ◽  
Gregori de A. Arruda ◽  
...  

This study shows a set of analysis of measurements from ground-based and satellite instruments to characterize the twilight zone (TLZ) between clouds and aerosols in São Paulo, Brazil. In the vicinity of clouds turbulence measurements showed an intense upward movement of aerosol layers, while sunphotometer results showed an increase in aerosol optical depth, and lidar measurements showed an increase in the backscatter vertical profile signal.

2021 ◽  
Vol 244 ◽  
pp. 117949 ◽  
Author(s):  
Aline Santos Damascena ◽  
Márcia Akemi Yamasoe ◽  
Vitor Souza Martins ◽  
Jorge Rosas ◽  
Noelia Rojas Benavente ◽  
...  

2019 ◽  
Vol 11 (2) ◽  
pp. 195 ◽  
Author(s):  
Fábio Lopes ◽  
Jonatan Silva ◽  
Juan Marrero ◽  
Ghassan Taha ◽  
Eduardo Landulfo

On 22 April 2015, the Calbuco volcano in Chile (Lat: 41.33 ∘ S, Long: 72.62 ∘ W) erupted after 43 years of inactivity followed by a great amount of aerosol injection into the atmosphere. The pyroclastic material dispersed into the atmosphere posed a potential threat to aviation traffic and air quality over affected a large area. The plumes and debris spread from its location to Patagonian and Pampean regions, reaching the Atlantic and Pacific Oceans and neighboring countries, such as Argentina, Brazil and Uruguay, driven by the westerly winds at these latitudes. The presence of volcanic aerosol layers could be identified promptly at the proximities of Calbuco and afterwards by remote sensing using satellites and lidars in the path of the dispersed aerosols. The Cloud-Aerosol Lidar and Pathfinder Satellite Observations (CALIPSO), Moderate Resolution Imaging Spectroradiometer (MODIS) on board of AQUA/TERRA satellites and Ozone Mapping and Profiler Suite (OMPS) on board of Suomi National Polar-orbiting Partnership (Suomi NPP) satellite were the space platforms used to track the injected layers and a multi-channel lidar system from Latin America Lidar Network (LALINET) SPU Lidar station in South America allowed us to get the spatial and temporal distribution of Calbuco ashes after its occurrence. The SPU lidar stations co-located Aerosol Robotic Network (AERONET) sunphotometers to help in the optical characterization. Here, we present the volcanic layer transported over São Paulo area and the detection of aerosol plume between 18 and 20 km. The path traveled by the volcanic aerosol to reach the Metropolitan Area of São Paulo (MASP) was tracked by CALIPSO and the aerosol optical and geometrical properties were retrieved at some points to monitor the plume evolution. Total attenuated backscatter profile at 532 nm obtained by CALIPSO revealed the height range extension of the aerosol plume between 18 and 20 km and are in agreement with SPU lidar range corrected signal at 532 nm. The daily evolution of Aerosol Optical Depth (AOD) at 532 and 355 nm, retrieved from AERONET sunphotometer, showed a substantial increasing on 27 April, the day of the volcanic plume detection at Metropolitan Area of São Paulo (MASP), achieving values of 0 . 33 ± 0 . 16 and 0 . 22 ± 0 . 09 at 355 and 532 nm, respectively. AERONET aerosol size distribution was dominated by fine mode aerosol over coarse mode, especially on 27 and 28 April. The space and time coincident aerosol extinction profiles from SPU lidar station and OMPS LP from the Calbuco eruption conducted on 27 April agreed on the double layer structure. The main objective of this study was the application of the transmittance method, using the Platt formalism, to calculate the optical and physical properties of volcanic plume, i.e., aerosol bottom and top altitude, the aerosol optical depth and lidar ratio. The aerosol plume was detected between 18 and 19.3 km, with AOD value of 0.159 at 532 nm and Ånsgtröm exponent of 0 . 61 ± 0 . 58 . The lidar ratio retrieved was 76 ± 27 sr and 63 ± 21 sr at 532 and 355 nm, respectively. Considering the values of these parameters, the Calbuco volcanic aerosol layers could be classified as sulfates with some ash type.


2004 ◽  
Author(s):  
Francisco Molero ◽  
Manuel Pujadas ◽  
Jose M. Fernandez ◽  
Maria P. Utrillas ◽  
Jose A. Martinez-Lozano ◽  
...  

2020 ◽  
Vol 13 (2) ◽  
pp. 893-905 ◽  
Author(s):  
Elina Giannakaki ◽  
Panos Kokkalis ◽  
Eleni Marinou ◽  
Nikolaos S. Bartsotas ◽  
Vassilis Amiridis ◽  
...  

Abstract. A new method, called ElEx (elastic extinction), is proposed for the estimation of extinction coefficient lidar profiles using only the information provided by the elastic and polarization channels of a lidar system. The method is applicable to lidar measurements both during daytime and nighttime under well-defined aerosol mixtures. ElEx uses the particle backscatter profiles at 532 nm and the vertically resolved particle linear depolarization ratio measurements at the same wavelength. The particle linear depolarization ratio and the lidar ratio values of pure aerosol types are also taken from literature. The total extinction profile is then estimated and compared well with Raman retrievals. In this study, ElEx was applied in an aerosol mixture of marine and dust particles at Finokalia station during the CHARADMExp campaign. Any difference between ElEx and Raman extinction profiles indicates that the nondust component could be probably attributed to polluted marine or polluted continental aerosols. Comparison with sun photometer aerosol optical depth observations is performed as well during daytime. Differences in the total aerosol optical depth are varying between 1.2 % and 72 %, and these differences are attributed to the limited ability of the lidar to correctly represent the aerosol optical properties in the near range due to the overlap problem.


2010 ◽  
Vol 98 (2-4) ◽  
pp. 486-499 ◽  
Author(s):  
G.L. Mariano ◽  
F.J.S. Lopes ◽  
M.P.P.M. Jorge ◽  
E. Landulfo

2014 ◽  
Vol 47 (3) ◽  
pp. 183-188
Author(s):  
R. Bourayou ◽  
F. J. Da Silva Lopes ◽  
R. Facundes Da Costa ◽  
P. Rodrigues Ferrini ◽  
E. Gonçalves Larroza ◽  
...  

2011 ◽  
Vol 137 ◽  
pp. 256-261 ◽  
Author(s):  
Xian Jie Cao ◽  
Lei Zhang ◽  
Xiao Jing Quan ◽  
Bi Zhou ◽  
Jing Bao ◽  
...  

The aerosol comparison experiment was conducted in the Semi-Arid Climate and Environment Observatory of Lanzhou University since March to April 2007 with the measurements of two micro-pulse lidars MPL-4B and CE370-2. In the paper, the differences of aerosol extinction coefficient and optical depth retrieved from the observations of MPL-4B and CE370-2 are analyzed, and the results show: the aerosol extinction coefficient retrieved from the observation of MPL-4B is in general smaller than that from CE370-2, and the difference mainly exists in the low layer, while their trends of vertical profiles agree well; the aerosol optical depths from the observations of MPL-4B and CE370-2 correlate linearly rather well with the coefficient of 0.71, and the aerosol optical depth retrieved from the measurement of MPL-4B is less than that from CE370-2 in whole.


Sign in / Sign up

Export Citation Format

Share Document