Exploring the relationship between high-resolution aerosol optical depth values and ground-level particulate matter concentrations in the Metropolitan Area of São Paulo

2021 ◽  
Vol 244 ◽  
pp. 117949 ◽  
Author(s):  
Aline Santos Damascena ◽  
Márcia Akemi Yamasoe ◽  
Vitor Souza Martins ◽  
Jorge Rosas ◽  
Noelia Rojas Benavente ◽  
...  
2019 ◽  
Vol 11 (2) ◽  
pp. 195 ◽  
Author(s):  
Fábio Lopes ◽  
Jonatan Silva ◽  
Juan Marrero ◽  
Ghassan Taha ◽  
Eduardo Landulfo

On 22 April 2015, the Calbuco volcano in Chile (Lat: 41.33 ∘ S, Long: 72.62 ∘ W) erupted after 43 years of inactivity followed by a great amount of aerosol injection into the atmosphere. The pyroclastic material dispersed into the atmosphere posed a potential threat to aviation traffic and air quality over affected a large area. The plumes and debris spread from its location to Patagonian and Pampean regions, reaching the Atlantic and Pacific Oceans and neighboring countries, such as Argentina, Brazil and Uruguay, driven by the westerly winds at these latitudes. The presence of volcanic aerosol layers could be identified promptly at the proximities of Calbuco and afterwards by remote sensing using satellites and lidars in the path of the dispersed aerosols. The Cloud-Aerosol Lidar and Pathfinder Satellite Observations (CALIPSO), Moderate Resolution Imaging Spectroradiometer (MODIS) on board of AQUA/TERRA satellites and Ozone Mapping and Profiler Suite (OMPS) on board of Suomi National Polar-orbiting Partnership (Suomi NPP) satellite were the space platforms used to track the injected layers and a multi-channel lidar system from Latin America Lidar Network (LALINET) SPU Lidar station in South America allowed us to get the spatial and temporal distribution of Calbuco ashes after its occurrence. The SPU lidar stations co-located Aerosol Robotic Network (AERONET) sunphotometers to help in the optical characterization. Here, we present the volcanic layer transported over São Paulo area and the detection of aerosol plume between 18 and 20 km. The path traveled by the volcanic aerosol to reach the Metropolitan Area of São Paulo (MASP) was tracked by CALIPSO and the aerosol optical and geometrical properties were retrieved at some points to monitor the plume evolution. Total attenuated backscatter profile at 532 nm obtained by CALIPSO revealed the height range extension of the aerosol plume between 18 and 20 km and are in agreement with SPU lidar range corrected signal at 532 nm. The daily evolution of Aerosol Optical Depth (AOD) at 532 and 355 nm, retrieved from AERONET sunphotometer, showed a substantial increasing on 27 April, the day of the volcanic plume detection at Metropolitan Area of São Paulo (MASP), achieving values of 0 . 33 ± 0 . 16 and 0 . 22 ± 0 . 09 at 355 and 532 nm, respectively. AERONET aerosol size distribution was dominated by fine mode aerosol over coarse mode, especially on 27 and 28 April. The space and time coincident aerosol extinction profiles from SPU lidar station and OMPS LP from the Calbuco eruption conducted on 27 April agreed on the double layer structure. The main objective of this study was the application of the transmittance method, using the Platt formalism, to calculate the optical and physical properties of volcanic plume, i.e., aerosol bottom and top altitude, the aerosol optical depth and lidar ratio. The aerosol plume was detected between 18 and 19.3 km, with AOD value of 0.159 at 532 nm and Ånsgtröm exponent of 0 . 61 ± 0 . 58 . The lidar ratio retrieved was 76 ± 27 sr and 63 ± 21 sr at 532 and 355 nm, respectively. Considering the values of these parameters, the Calbuco volcanic aerosol layers could be classified as sulfates with some ash type.


Author(s):  
Ediclê De Souza Fernandes Duarte ◽  
Philipp Franke ◽  
Anne Caroline Lange ◽  
Elmar Friese ◽  
Fábio Juliano da Silva Lopes ◽  
...  

2014 ◽  
Vol 89 ◽  
pp. 189-198 ◽  
Author(s):  
Alexandra A. Chudnovsky ◽  
Petros Koutrakis ◽  
Itai Kloog ◽  
Steven Melly ◽  
Francesco Nordio ◽  
...  

2013 ◽  
Vol 13 (8) ◽  
pp. 20839-20883 ◽  
Author(s):  
J. Brito ◽  
L. V. Rizzo ◽  
P. Herckes ◽  
P. C. Vasconcellos ◽  
S. E. S. Caumo ◽  
...  

Abstract. The notable increase in biofuel usage by the road transportation sector in Brazil during recent years has significantly altered the vehicular fuel composition. Consequently, many uncertainties are currently found in particulate matter vehicular emission profiles. In an effort to better characterize the emitted particulate matter, measurements of aerosol physical and chemical properties were undertaken inside two tunnels located in the São Paulo Metropolitan Area (SPMA). The tunnels show very distinct fleet profiles: in the Jânio Quadros (JQ) tunnel, the vast majority of the circulating fleet are Light Duty Vehicles (LDVs), fuelled on average with the same amount of ethanol as gasoline. In the Rodoanel (RA) tunnel, the particulate emission is dominated by Heavy Duty Vehicles (HDVs) fuelled with diesel (5% biodiesel). In the JQ tunnel, PM2.5 concentration was on average 52 μg m−3, with the largest contribution of Organic Mass (OM, 42%), followed by Elemental Carbon (EC, 17%) and Crustal elements (13%). Sulphate accounted for 7% of PM2.5 and the sum of other trace elements was 10%. In the RA tunnel, PM2.5 was on average 233 μg m−3, mostly composed of EC (52%) and OM (39%). Sulphate, crustal and the trace elements showed a minor contribution with 5%, 1% and 1%, respectively. The average OC:EC ratio in the JQ tunnel was 1.59 ± 0.09, indicating an important contribution of EC despite the high ethanol fraction in the fuel composition. In the RA tunnel, the OC:EC ratio was 0.49 ± 0.12, consistent with previous measurements of diesel fuelled HDVs. Besides bulk carbonaceous aerosol measurement, Polycyclic Aromatic Hydrocarbons (PAHs) were quantified. The sum of the PAHs concentration was 56 ± 5 ng m−3 and 45 ± 9 ng m−3 in the RA and JQ tunnel, respectively. In the JQ tunnel, Benzo(a)pyrene (BaP) ranged from 0.9 to 6.7 ng m−3 (0.02–0.1‰ of PM2.5) in the JQ tunnel whereas in the RA tunnel BaP ranged from 0.9 to 4.9 ng m−3 (0.004–0.02‰ of PM2.5), indicating an important relative contribution of LDVs emission to atmospheric BaP. Real-time measurements performed in both tunnels provided aerosol size distributions and optical properties. The average particle count yielded 73 000 cm−3 in the JQ tunnel and 366 000 cm−3 in the RA tunnel, with an average diameter of 48 nm in the former and 39 nm in the latter. Aerosol single scattering albedo, calculated from scattering and absorption observations in the JQ tunnel, showed a minimum value of 0.4 at the peak of the morning rush hour, reached 0.6 around noon and stabilized at 0.5 in the afternoon and evening. Such single scattering albedo range is close to other tunnel studies results, despite significant biofuel usage. Given the exceedingly high Black Carbon loadings in the RA tunnel, real time light absorption measurements were possible only in the JQ tunnel. Nevertheless, using EC measured from the filters a single scattering albedo of 0.32 for the RA tunnel has been estimated. The results presented here characterize particulate matter emitted from nearly 1 million vehicles fuelled with a considerable amount of biofuel, providing an unique experimental site worldwide.


2020 ◽  
Vol 237 ◽  
pp. 07015
Author(s):  
Jonatan da Silva ◽  
Fernando G. Morais ◽  
Marco A. Franco ◽  
Fábio J. S. Lopes ◽  
Gregori de A. Arruda ◽  
...  

This study shows a set of analysis of measurements from ground-based and satellite instruments to characterize the twilight zone (TLZ) between clouds and aerosols in São Paulo, Brazil. In the vicinity of clouds turbulence measurements showed an intense upward movement of aerosol layers, while sunphotometer results showed an increase in aerosol optical depth, and lidar measurements showed an increase in the backscatter vertical profile signal.


2021 ◽  
Vol 21 (24) ◽  
pp. 18375-18391
Author(s):  
Qingqing He ◽  
Mengya Wang ◽  
Steve Hung Lam Yim

Abstract. Satellite aerosol retrievals have been a popular alternative to monitoring the surface-based PM2.5 concentration due to their extensive spatial and temporal coverage. Satellite-derived PM2.5 estimations strongly rely on an accurate representation of the relationship between ground-level PM2.5 and satellite aerosol optical depth (AOD). Due to the limitations of satellite AOD data, most studies have examined the relationship at a coarse resolution (i.e., ≥ 10 km); thus, more effort is still needed to better understand the relationship between “in situ” PM2.5 and AOD at finer spatial scales. While PM2.5 and AOD could have obvious temporal variations, few studies have examined the diurnal variation in their relationship. Therefore, considerable uncertainty still exists in satellite-derived PM2.5 estimations due to these research gaps. Taking advantage of the newly released fine-spatial-resolution satellite AOD data derived from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm and real-time ground aerosol and PM2.5 measurements, this study explicitly explored the relationship between PM2.5 and AOD as well as its plausible impact factors, including meteorological parameters and topography, in mainland China during 2019, at various spatial and temporal scales. The coefficient of variation, the Pearson correlation coefficient and the slope of the linear regression model were used. Spatially, stronger correlations mainly occurred in northern and eastern China, and the linear slope was larger on average in northern inland regions than in other areas. Temporally, the PM2.5–AOD correlation peaked at noon and in the afternoon, and reached a maximum in winter. Simultaneously, considering relative humidity (RH) and the planetary boundary layer height (PBLH) in the relationship can improve the correlation, but the effect of RH and the PBLH on the correlation varied spatially and temporally with respect to both strength and direction. In addition, the largest correlation occurred at 400–600 m primarily in basin terrain such as the Sichuan Basin, the Shanxi–Shaanxi basins and the Junggar Basin. MAIAC 1 km AOD can better represent the ground-level fine particulate matter in most domains with exceptions, such as in very high terrain (i.e., Tibetan Plateau) and northern central China (i.e., Qinghai and Gansu). The findings of this study have useful implications for satellite-based PM2.5 monitoring and will further inform the understanding of the aerosol variation and PM2.5 pollution status of mainland China.


2012 ◽  
Vol 28 (8) ◽  
pp. 1591-1598 ◽  
Author(s):  
Estela Cristina Carneseca ◽  
Jorge Alberto Achcar ◽  
Edson Zangiacomi Martinez

The study was designed to investigate the impact of air pollution on monthly inhalation/nebulization procedures in Ribeirão Preto, São Paulo State, Brazil, from 2004 to 2010. To assess the relationship between the procedures and particulate matter (PM10) a Bayesian Poisson regression model was used, including a random factor that captured extra-Poisson variability between counts. Particulate matter was associated with the monthly number of inhalation/nebulization procedures, but the inclusion of covariates (temperature, precipitation, and season of the year) suggests a possible confounding effect. Although other studies have linked particulate matter to an increasing number of visits due to respiratory morbidity, the results of this study suggest that such associations should be interpreted with caution.


2019 ◽  
Vol 12 (10) ◽  
pp. 5431-5441 ◽  
Author(s):  
Eric A. Wendt ◽  
Casey W. Quinn ◽  
Daniel D. Miller-Lionberg ◽  
Jessica Tryner ◽  
Christian L'Orange ◽  
...  

Abstract. Globally, fine particulate matter (PM2.5) air pollution is a leading contributor to death, disease, and environmental degradation. Satellite-based measurements of aerosol optical depth (AOD) are used to estimate PM2.5 concentrations across the world, but the relationship between satellite-estimated AOD and ground-level PM2.5 is uncertain. Sun photometers measure AOD from the Earth's surface and are often used to improve satellite data; however, reference-grade photometers and PM2.5 monitors are expensive and rarely co-located. This work presents the development and validation of the aerosol mass and optical depth (AMOD) sampler, an inexpensive and compact device that simultaneously measures PM2.5 mass and AOD. The AMOD utilizes a low-cost light-scattering sensor in combination with a gravimetric filter measurement to quantify ground-level PM2.5. Aerosol optical depth is measured using optically filtered photodiodes at four discrete wavelengths. Field validation studies revealed agreement within 10 % for AOD values measured between co-located AMOD and AErosol RObotics NETwork (AERONET) monitors and for PM2.5 mass measured between co-located AMOD and EPA Federal Equivalent Method (FEM) monitors. These results demonstrate that the AMOD can quantify AOD and PM2.5 accurately at a fraction of the cost of existing reference monitors.


2018 ◽  
Vol 202 ◽  
pp. 253-263 ◽  
Author(s):  
Regina Maura de Miranda ◽  
Maria de Fatima Andrade ◽  
Flavia Noronha Dutra Ribeiro ◽  
Kelliton José Mendonça Francisco ◽  
Pedro José Pérez-Martínez

Sign in / Sign up

Export Citation Format

Share Document