scholarly journals Analytical treatment of small scales matter power spectrum in coupled scalar field (CSF) cosmology

2020 ◽  
Vol 240 ◽  
pp. 02003
Author(s):  
Fargiza A. M. Mulki ◽  
Hesti Wulandari

In this paper, we reconstruct matter power spectrum of a cosmological model in which coupled scalar field acts as dark energy. The coupled scalar field (CSF) dark energy we propose here is a generalized model of quintessence, k-essence or phantom coupled to dark matter (non-baryonic matter) via a coupling constant. The existence of coupling between dark energy and matter allows energy to transfer between them, which may give rise to different observational signatures, especially at perturbation level, including matter power spectrum. In this work, through analytical exploration we studied that possible signature in matter power spectrum that maybe induced by this mode.

2021 ◽  
Vol 2021 (11) ◽  
pp. 062
Author(s):  
G. Pordeus-da-Silva ◽  
R.C. Batista ◽  
L.G. Medeiros

Abstract Using the Reduced Relativistic Gas (RRG) model, we analytically determine the matter power spectrum for Warm Dark Matter (WDM) on small scales, k > 1 h/Mpc. The RRG is a simplified model for the ideal relativistic gas, but very accurate in the cosmological context. In another work, we have shown that, for typical allowed masses for dark matter particles, m>5 keV, the higher order multipoles, ℓ ≥ 2, in the Einstein-Boltzmann system of equations are negligible on scales k < 10 h/Mpc. Hence, we can follow the perturbations of WDM using the ideal fluid framework, with equation of state and sound speed of perturbations given by the RRG model. We derive a Mészáros-like equation for WDM and solve it analytically in radiation, matter and dark energy dominated eras. Joining these solutions, we get an expression that determines the value of WDM perturbations as a function of redshift and wavenumber. Then we construct the matter power spectrum and transfer function of WDM on small scales and compare it to some results coming from Lyman-α forest observations. Besides being a clear and pedagogical analytical development to understand the evolution of WDM perturbations, our power spectrum results are consistent with the observations considered and the other determinations of the degree of warmness of dark matter particles.


Author(s):  
S. Parnovsky

The tensions between the values of Hubble constant obtained from the early and the late Universe could be eliminated if we use the ΛWDM cosmological model with dark energy, baryonic matter and warm dark matter (WDM) with characteristic velocities about 16 % of the speed of light. A pressure of WDM is equal to its energy density multiplied by factor 0.009.


2009 ◽  
Vol 24 (08n09) ◽  
pp. 1674-1677
Author(s):  
SANDRO SILVA E COSTA

One approach in modern cosmology consists in supposing that dark matter and dark energy are different manifestations of a single 'quartessential' fluid. Following such idea, this work presents a summary of some studies of the evolution of density perturbations in a flat cosmological model with a modified Chaplygin gas acting as a single component. Our goal is to obtain properties of the model which can be used to distinguish it from another cosmological models which have the same solutions for the general evolution of the scale factor of the universe, even without the construction of the power spectrum. Both our analytical and numerical results clearly indicate as one interesting feature of the model the presence of peaks in the evolution of the density constrast.


2014 ◽  
Vol 29 (21) ◽  
pp. 1444010
Author(s):  
Bruce H. J. McKellar ◽  
T. J. Goldman ◽  
G. J. Stephenson

If fermions interact with a scalar field, and there are many fermions present the scalar field may develop an expectation value and generate an effective mass for the fermions. This can lead to the formation of fermion clusters, which could be relevant for neutrino astrophysics and for dark matter astrophysics. Because this system may exhibit negative pressure, it also leads to a model of dark energy.


2020 ◽  
Vol 500 (2) ◽  
pp. 2532-2542
Author(s):  
Linda Blot ◽  
Pier-Stefano Corasaniti ◽  
Yann Rasera ◽  
Shankar Agarwal

ABSTRACT Future galaxy surveys will provide accurate measurements of the matter power spectrum across an unprecedented range of scales and redshifts. The analysis of these data will require one to accurately model the imprint of non-linearities of the matter density field. In particular, these induce a non-Gaussian contribution to the data covariance that needs to be properly taken into account to realize unbiased cosmological parameter inference analyses. Here, we study the cosmological dependence of the matter power spectrum covariance using a dedicated suite of N-body simulations, the Dark Energy Universe Simulation–Parallel Universe Runs (DEUS-PUR) Cosmo. These consist of 512 realizations for 10 different cosmologies where we vary the matter density Ωm, the amplitude of density fluctuations σ8, the reduced Hubble parameter h, and a constant dark energy equation of state w by approximately $10{{\ \rm per\ cent}}$. We use these data to evaluate the first and second derivatives of the power spectrum covariance with respect to a fiducial Λ-cold dark matter cosmology. We find that the variations can be as large as $150{{\ \rm per\ cent}}$ depending on the scale, redshift, and model parameter considered. By performing a Fisher matrix analysis we explore the impact of different choices in modelling the cosmological dependence of the covariance. Our results suggest that fixing the covariance to a fiducial cosmology can significantly affect the recovered parameter errors and that modelling the cosmological dependence of the variance while keeping the correlation coefficient fixed can alleviate the impact of this effect.


2011 ◽  
Vol 20 (13) ◽  
pp. 2543-2558 ◽  
Author(s):  
SAMUEL LEPE ◽  
JAVIER LORCA ◽  
FRANCISCO PEÑA ◽  
YERKO VÁSQUEZ

From a variational action with nonminimal coupling with a scalar field and classical scalar and fermionic interaction, cosmological field equations can be obtained. Imposing a Friedmann–Lemaître–Robertson–Walker (FLRW) metric, the equations lead directly to a cosmological model consisting of two interacting fluids, where the scalar field fluid is interpreted as dark energy and the fermionic field fluid is interpreted as dark matter. Several cases were studied analytically and numerically. An important feature of the non-minimal coupling is that it allows crossing the barrier from a quintessence to phantom behavior. The insensitivity of the solutions to one of the parameters of the model permits it to find an almost analytical solution for the cosmological constant type of universe.


Author(s):  
Frederick J. Mayer

This brief communication considers and illustrates dark matter and dark energy within the Baryon Phase Transition (BPT) cosmological model as well as some experiments that may confirm (or deny) the validity of the model.


Author(s):  
Engel Roza

It is shown that the Lambda component in the cosmological Lambda-CDM model can be conceived as vacuum energy, consisting of gravitational particles subject to Heisenberg&rsquo;s energy-time uncertainty. These particles can be modelled as elementary polarisable Dirac-type dipoles (&ldquo;darks&rdquo;) in a fluidal space at thermodynamic equilibrium, with spins that are subject to the Bekenstein-Hawking entropy. Around the baryonic kernels, uniformly distributed in the universe, the spins are polarized, thereby invoking an increase of the effective gravitational strength of the kernels. It explains the dark matter effect to the extent that the numerical value of Milgrom&rsquo;s acceleration constant can be assessed by theory. Non-polarized vacuum particles beyond the baryonic kernels compose the dark energy. The result is a quantum mechanical interpretation of gravity in terms of quantitatively established shares in baryonic matter, dark matter and dark energy, which correspond with the values of the Lambda-CDM model..


Sign in / Sign up

Export Citation Format

Share Document