scholarly journals Experimental investigation of the effect of the air inlet angle and the combustion pressure in a ducted rocket combustor

Author(s):  
V. Laguzzi ◽  
F. Molinaro ◽  
B. Natan

The scope of the study is to evaluate the combustion efficiency of a ducted rocket combustor operating at different conditions, using a connected-pipe testing setup. An experimental parametric investigation was conducted to evaluate the effect of the inlet air-injection angles and the effect of the combustion pressure for different fuel-to-air ratios. The experimental results indicate that best energetic performance was obtained for an injection angle of 120°, i. e., against the main flow direction. The reason is that this way better mixing was obtained and the residence time increased. Characteristic velocity was found to decrease with decreasing the combustion pressure.

2011 ◽  
Vol 130-134 ◽  
pp. 3151-3154
Author(s):  
Li Kun Cui ◽  
Yong Zhi Zhang ◽  
Zhuo Li

In order to reveal the complex turbulent combustion processes in the afterburning chamber of Solid Ducked Rocket (SDR), Based on the fundamental equations of hydrokinetics and elementary principles of radical reaction kinetics, using multi-component chemical reaction equation of containing Mg and Al components, the numerical simulation of chemical non-equilibrium flow in the afterburning chamber of SDR is processed and effects of the air inlet angle on the afterburning chamber is studied by using Fluent software. The results show that pressure distribution is more balanced, temperature distribution is very uneven and flow is extremely complicated in the afterburning chamber. Combustion efficiency can be increased by improving the air inlet angle.


2019 ◽  
Vol 159 ◽  
pp. 87-95 ◽  
Author(s):  
Yihua Xu ◽  
Rui Jia ◽  
Humberto Medina ◽  
Haijun Sun

Volume 1 ◽  
2004 ◽  
Author(s):  
Jun Sung Park ◽  
Seung Wook Baek

It is chemical laser system that can be used for not only new strategic weapon system for the military purpose, but also a manufacturing tool in industrial areas due to the characteristic of high power laser beam in megawatt range. In order to increase laser beam power in the chemical laser system, mixing efficiency of fuel and oxidant should be higher and more excited molecules be produced by mean of chemical reaction. Basically, the production of a lot of excited molecules in the laser cavity results from the high mass flow rates of fuel and oxidant as well as high mixing and reaction efficiencies, however, it is difficult for the planar nozzle array which has been widely used until now to supply high mass flow to the chemical laser cavity. A radial expansion nozzle array as an innovated alternative of the planar nozzle system is designed. The laser beam generation in this system is achieved by mixing F atom from supersonic nozzle and D2 molecule from the holes of round-bended supply line which are distributed with zigzag configuration, hence the reaction surface will be stretched. Consequently, it is expected that more excited molecules will be produced and population inversion also be higher. Based on that the fuel injection angle with mainstream has a big influence of performance of supersonic combustor, the effects of D2 injection angles with the main F flow on mixing enhancement and laser beam power are numerically investigated. The results are discussed by comparison with three cases of D2 injection angles; 10°, 20° and 40° with the main flow direction. Major results reveal that the area where the DF(1) excited molecules as a representative product in the DF chemical laser system are produced becomes larger when the D2 injection angle increases. The reason is that the surface of chemical reaction is larger and the field temperature is higher with increase of the D2 injection angle. And in all the vibrational transitions, the distributions of the highest maximum small signal gains are observed near the inlet when the D2 injection angle is 40°. As the D2 injection angle increases, the values of the maximum SSG are higher and the area including the high gains is also wider for the most part of domain. Based on these maximum SSG distributions, the highest power of laser beam is expected to be generated when the D2 injection angle is 40°, namely higher. However, the range of population inversion becomes narrower as the D2 injection angle increases, because the collision of molecules or atoms happens more often so that the relaxation time will be reduced as the cavity pressure caused by the high D2 injection angle with the main flow direction increases.


2012 ◽  
Vol 516-517 ◽  
pp. 1022-1027 ◽  
Author(s):  
Dong Hu ◽  
Chuan Lin Tang ◽  
Feng Hua Zhang

In order to investigate the air injection method on the performance of an airlift. For this purpose an air lift system with a riser 2000 mm long and 80 mm in diameter, was designed and tested. Seven different air injection methods were used at a constant submergence. The experimental results showed a marked effect on the airlift performance when operated with different air injection methods. The arrangement of five nozzles gives the best performance, and the one nozzle is the worst. Although the injection angle has a little effect on the airlift performance, but view the general conclusions as a whole, the best lifting efficiency can be obtained when the angle of the nozzle placed along the tangential direction of pipe wall is equal to 10º at a given air flow rate QG =37m3/h.


1973 ◽  
Vol 24 (1) ◽  
pp. 25-33
Author(s):  
J W Craggs ◽  
K W Mangler ◽  
M Zamir

SummaryWhen the incompressible potential flow past a three-dimensional body is represented by source distributions on the body surface, these source distributions have singularities near an edge or corner, for example á trailing edge of a wing or the (unfaired) intersection of a body and a wing. The nature of these singularities is discussed. When assuming slow variations of the geometry in the main flow direction we can consider a two-dimensional problem in the cross-flow plane. Here the tangential velocities and source distributions are proportional to certain powers of the distance from the corner. For example at a convex right-angled corner these powers are − ⅓ in the asymmetric case (the bisector is a potential line) and ⅓ in the symmetric case (the bisector is a streamline) for both sources and tangential velocities. At a concave right-angled corner the corresponding values for the source distributions are ⅓ (asymmetric case) and − ⅓ (symmetric case) whereas they are 1 and 3 respectively for the tangential velocities.


Author(s):  
Kevin Tracy ◽  
Stephen P. Lynch

Abstract Shaped film cooling holes are used extensively for film cooling in gas turbines due to their superior performance in keeping coolant attached to the surface, relative to cylindrical holes. However, fewer studies have examined the impact of the orientation of the shaped hole axis relative to the main flow direction, known as a compound angle. A compound angle can occur intentionally due to manufacturing, or unintentionally due to changes in the main flow direction at off-design conditions. In either case, the compound angle causes the film cooling jet to roll up into a strong streamwise vortex that changes the lateral distribution of coolant, relative to the pair of vortices that develop from an axially oriented film cooling hole. In this study, Large Eddy Simulation (LES) using the Wall-Adapting Local Eddy Viscosity (WALE) model was performed on the publicly available 7-7-7 shaped film cooling hole, at two orientations (0°, 30°) and two blowing ratios (M = 1, 3). Laterally-averaged film effectiveness was largely unchanged by a compound angle at a blowing ratio of 1, but improved at a blowing ratio of 3. For both blowing ratios, the lateral distribution of film was more uniform with the addition of a 30° compound angle. Both wall normal and lateral turbulent convective heat transfer was increased by the addition of a compound angle at both blowing ratios.


2015 ◽  
Vol 767 ◽  
pp. 364-393 ◽  
Author(s):  
P. Lubin ◽  
S. Glockner

AbstractThe scope of this work is to present and discuss the results obtained from simulating three-dimensional plunging breaking waves by solving the Navier–Stokes equations, in air and water. Recent progress in computational capabilities has allowed us to run fine three-dimensional simulations, giving us the opportunity to study for the first time fine vortex filaments generated during the early stage of the wave breaking phenomenon. To date, no experimental observations have been made in laboratories, and these structures have only been visualised in rare documentary footage (e.g. BBC 2009 South Pacific. Available on YouTube, 7BOhDaJH0m4). These fine coherent structures are three-dimensional streamwise vortical tubes, like vortex filaments, connecting the splash-up and the main tube of air, elongated in the main flow direction. The first part of the paper is devoted to the presentation of the model and numerical methods. The air entrainment occurring when waves break is then carefully described. Thanks to the high resolution of the grid, these fine elongated structures are simulated and explained.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Helmut Sauer ◽  
Robin Schmidt ◽  
Konrad Vogeler

In this paper, results concerning the influence of chord length and inlet boundary layer thickness on the endwall loss of a linear turbine cascade are discussed. The investigations were performed in a low speed cascade tunnel using the turbine profile T40. The turning of 90 deg and 70 deg, the velocity ratio in the cascade from 1.0 to 3.5 as well as the chord length of 100 mm, 200 mm, and 300 mm were specified. In a measurement distance of one chord behind the cascade in main flow direction, an approximate proportionality of endwall loss and chord was observed in a wide range of velocity ratios. At small measurement distances (e.g., s2/l=0.4), this proportionality does not exist. If a part of the flow path within the cascade is approximately incorporated, a proportionality to the chord at small measurement distances can be obtained, too. Then, the magnitude of the endwall loss mainly depends on the distance in main flow direction. At velocity ratios near 1.0, the influence of the chord decreases rapidly, while at a velocity ratio of 1.0, the endwall loss is independent of the chord. By varying the inlet boundary layer thickness, no correlation of displacement thickness and endwall loss was achieved. A calculation method according to the modified integral equation by van Driest delivers the wall shear stress. Its influence on the endwall loss was analyzed.


2019 ◽  
Vol 865 ◽  
Author(s):  
Kevin Kevin ◽  
Jason Monty ◽  
Nicholas Hutchins

This paper quantifies the instantaneous form of large-scale turbulent structures in canonical smooth-wall boundary layers, demonstrating that they adhere to a form that is consistent with the self-sustaining streak instability model suggested by Flores & Jiménez (Phys. Fluids, vol. 22, 2010, 071704) and Hwang & Cossu (Phys. Fluids, vol. 23, 2011, 061702). Our motivation for this study stems from previous observations of large-scale streaks that have been spatially locked in position within spanwise-heterogeneous boundary layers. Here, using similar tools, we demonstrate that the randomly occurring large-scale structures in canonical layers show similar behaviour. Statistically, we show that the signature of large-scale coherent structures exhibits increasing meandering behaviour with distance from the wall. At the upper edge of the boundary layer, where these structures are severely misaligned from the main-flow direction, the induced velocities associated with the strongly yawed vortex packets/clusters yield a significant spanwise-velocity component leading to an apparent oblique coherence of spanwise-velocity fluctuations. This pronounced meandering behaviour also gives rise to a dominant streamwise periodicity at a wavelength of approximately $6\unicode[STIX]{x1D6FF}$. We further statistically show that the quasi-streamwise roll-modes formed adjacent to these very large wavy motions are often one-sided (spanwise asymmetric), in stark contrast to the counter-rotating form suggested by conventional conditionally averaged representations. To summarise, we sketch a representative picture of the typical large-scale structures based on the evidence gathered in this study.


Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 553 ◽  
Author(s):  
Muhammad Afzal Rana ◽  
Yasar Ali ◽  
Babar Ahmad ◽  
Muhammad Touseef Afzal Rana

This work explores the three-dimensional laminar flow of an incompressible second-grade fluid between two parallel infinite plates. The assumed suction velocity comprises a basic steady dispersal with a superimposed weak transversally fluctuating distribution. Because of variation of suction velocity in transverse direction on the wall, the problem turns out to be three-dimensional. Analytic solutions for velocity field, pressure and skin friction are presented and effects of dimensionless parameters emerging in the model are discussed. It is observed that the non-Newtonian parameter plays dynamic part to rheostat the velocity component along main flow direction.


Sign in / Sign up

Export Citation Format

Share Document