Some Remarks on the Behaviour of Surface Source Distributions near the Edge of a Body

1973 ◽  
Vol 24 (1) ◽  
pp. 25-33
Author(s):  
J W Craggs ◽  
K W Mangler ◽  
M Zamir

SummaryWhen the incompressible potential flow past a three-dimensional body is represented by source distributions on the body surface, these source distributions have singularities near an edge or corner, for example á trailing edge of a wing or the (unfaired) intersection of a body and a wing. The nature of these singularities is discussed. When assuming slow variations of the geometry in the main flow direction we can consider a two-dimensional problem in the cross-flow plane. Here the tangential velocities and source distributions are proportional to certain powers of the distance from the corner. For example at a convex right-angled corner these powers are − ⅓ in the asymmetric case (the bisector is a potential line) and ⅓ in the symmetric case (the bisector is a streamline) for both sources and tangential velocities. At a concave right-angled corner the corresponding values for the source distributions are ⅓ (asymmetric case) and − ⅓ (symmetric case) whereas they are 1 and 3 respectively for the tangential velocities.

1969 ◽  
Vol 39 (1) ◽  
pp. 97-115 ◽  
Author(s):  
J. N. Newman

The method of matched asymptotic expansions is used to determine the lateral flow of an ideal fluid past a slender body, when the flow is constrained by a pair of closely spaced walls parallel to the long axis of the body. In the absence of walls, the flow field would be nearly two-dimensional in the cross-flow plane normal to the body axis, but the walls introduce an effective blockage in the cross-flow plane, which causes the flow field to become three-dimensional. Part of the flow is diverted around the body ends, and part flows past the body in the inner cross-flow plane with a reduced ‘inner stream velocity’. An integro-differential equation of identical form to Prandtl's lifting-line equation is derived for the determination of this unknown inner stream velocity in the cross-flow plane. Approximate solutions are applied to determine the added mass and moment of inertia for accelerated body motions and the lift force and moment acting on a wing of low aspect ratio. It is found that the walls generally increase these forces and moments, but that the effect is significant only when the clearance between the body and the walls is very small.


2005 ◽  
Vol 49 (02) ◽  
pp. 144-158 ◽  
Author(s):  
F. Kara ◽  
D. Vassalos

The Ship Stability Research Centre, Department of Naval Architecture and Marine Engineering, The Universities of Glasgow and Strathclyde, Scotland, UKA linearized three-dimensional potential flow formulation in time domain is applied to calculate wave-making resistance of ships in calm water. Steady-state perturbation potentials for resistance are obtained as the steady-state limit of the surge radiation impulse response function using the transient free surface source distribution over the body surface. Five different vessels are used to validate the present numerical approximation. The results, including steady-state wave-making resistance, sinkage force, trim moment, and wave profile along the waterline, are compared with other published numerical and experimental results.


2015 ◽  
Vol 767 ◽  
pp. 364-393 ◽  
Author(s):  
P. Lubin ◽  
S. Glockner

AbstractThe scope of this work is to present and discuss the results obtained from simulating three-dimensional plunging breaking waves by solving the Navier–Stokes equations, in air and water. Recent progress in computational capabilities has allowed us to run fine three-dimensional simulations, giving us the opportunity to study for the first time fine vortex filaments generated during the early stage of the wave breaking phenomenon. To date, no experimental observations have been made in laboratories, and these structures have only been visualised in rare documentary footage (e.g. BBC 2009 South Pacific. Available on YouTube, 7BOhDaJH0m4). These fine coherent structures are three-dimensional streamwise vortical tubes, like vortex filaments, connecting the splash-up and the main tube of air, elongated in the main flow direction. The first part of the paper is devoted to the presentation of the model and numerical methods. The air entrainment occurring when waves break is then carefully described. Thanks to the high resolution of the grid, these fine elongated structures are simulated and explained.


Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 553 ◽  
Author(s):  
Muhammad Afzal Rana ◽  
Yasar Ali ◽  
Babar Ahmad ◽  
Muhammad Touseef Afzal Rana

This work explores the three-dimensional laminar flow of an incompressible second-grade fluid between two parallel infinite plates. The assumed suction velocity comprises a basic steady dispersal with a superimposed weak transversally fluctuating distribution. Because of variation of suction velocity in transverse direction on the wall, the problem turns out to be three-dimensional. Analytic solutions for velocity field, pressure and skin friction are presented and effects of dimensionless parameters emerging in the model are discussed. It is observed that the non-Newtonian parameter plays dynamic part to rheostat the velocity component along main flow direction.


2014 ◽  
Vol 721 ◽  
pp. 199-202
Author(s):  
Zhen Xiao Bi ◽  
Zhi Han Zhu

This paper presents the calculation of hydrodynamic characteristics of two side-by-side cylinders of different diameters in three dimensional incompressible uniform cross flow by using Large-eddy simulation method based on dynamical Smagorinsky-Lilly sub-grid scale model. Solution of the three dimensional N-S equations were obtained by the finite volume method. The numerical simulation focused on investigating the characteristic of the pressure distribution (drag and lift force), vorticity field and turbulence Re=. Results shows that, the asymmetry of the time –averaged velocity distribution in the flow direction behind the two cylinders is very obvious; the frequency of eddy shedding of the small cylinder is about twice of the large one. The turbulence of cylinders is more obvious.


2015 ◽  
Vol 26 (5) ◽  
pp. 795-819
Author(s):  
P. E. WESTWOOD ◽  
F. T. SMITH

The theoretical investigation here of a three-dimensional array of jets of fluid (air guns) and their interference is motivated by applications to the food sorting industry especially. Three-dimensional motion without symmetry is addressed for arbitrary jet cross-sections and incident velocity profiles. Asymptotic analysis based on the comparatively long axial length scale of the configuration leads to a reduced longitudinal vortex system providing a slender flow model for the complete array response. Analytical and numerical studies, along with comparisons and asymptotic limits or checks, are presented for various cross-sectional shapes of nozzle and velocity inputs. The influences of swirl and of unsteady jets are examined. Substantial cross-flows are found to occur due to the interference. The flow solution is non-periodic in the cross-plane even if the nozzle array itself is periodic. The analysis shows that in general the bulk of the three-dimensional motion can be described simply in a cross-plane problem but the induced flow in the cross-plane is sensitively controlled by edge effects and incident conditions, a feature which applies to any of the array configurations examined. Interference readily alters the cross-flow direction and misdirects the jets. Design considerations centre on target positioning and jet swirling.


Author(s):  
Ivan Korkischko ◽  
Julio R. Meneghini ◽  
Rafael S. Gioria ◽  
Paulo J. Jabardo ◽  
Enrique Casaprima ◽  
...  

This paper presents experimental results concerning the response of circular cylinders with and without strakes. The longitudinal and transverse fluid forces (drag and lift), amplitude response and wake structures of plain and helically straked cylinders are compared. Six different configurations of straked cylinders with pitches (p) equal to 5D, 10D and 15D and heights (h) equal to 0.1D and 0.2D are investigated. Measurements on the dynamic response oscillations of an isolated plain and straked cylinders and flow visualization employing a PIV system are shown. Fixed cylinder drag measurements are also shown. The models are mounted on an elastic base fitted with flexor blades and instrumented with strain gauges or in an air bearing base. The base is fixed on the test-section of a water channel facility. The flexor blades possess a low-damping and the flexor blades base an the air bearing base are free to oscillate only in the cross-flow direction. The Reynolds number of the experiments ranges from 2000 to 10000, and reduced velocities, based on natural frequency in still water, vary up to 13. The drag coefficient is increased by 20% for the h = 0.1D cylinder, and 60% for the h = 0.2D cylinder, comparing both with the plain cylinder. The smaller height strokes (h = 0.1D) do not prevent vortex formation in the region very close to the body, resulting in a decrease of about 50% of the amplitude response compared with the plain cylinder. Lowest amplitude response was found to the p = 10D and h = 0.2D case. The analysis of the vorticity contours shows that the shear layer does not roll close to the body (same result for the other cases with h = 0.2D).


2001 ◽  
Vol 123 (6) ◽  
pp. 571-579 ◽  
Author(s):  
Tadashige Ikeda ◽  
Yuji Matsuzaki ◽  
Tatsuya Aomatsu

A two-dimensional flexible channel model of the vocal folds coupled with an unsteady one-dimensional flow model is presented for an analysis of the mechanism of phonation. The vocal fold is approximated by springs and dampers distributed in the main flow direction that are enveloped with an elastic cover. In order to approximate three-dimensional collision of the vocal folds using the two-dimensional model, threshold values for the glottal width are introduced. The numerical results show that the collision plays an important role in speech sound, especially for higher resonant frequency components, because it causes the source sound to include high-frequency components.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Y. Ali ◽  
M. A. Rana ◽  
M. Shoaib

A mathematical model for magnetohydrodynamic (MHD) three-dimensional Couette flow of an incompressible Maxwell fluid is developed and analyzed theoretically. The application of transverse sinusoidal injection at the lower stationary plate and its equivalent removal by suction through the uniformly moving upper plate lead to three-dimensional flow. Approximate solutions for velocity field, pressure, and skin friction are obtained. The effects of flow parameters such as Hartmann number, Reynolds number, suction/injection parameter, and the Deborah number on velocity components, skin friction factors along main flow direction and transverse direction, and pressure through parallel porous plates are discussed graphically. It is noted that Hartmann number provides a mechanism to control the skin friction component along the main flow direction.


1998 ◽  
Vol 355 ◽  
pp. 359-381 ◽  
Author(s):  
M. J. TAYLOR ◽  
N. PEAKE

The long-time limit of the response of incompressible three-dimensional boundary layer flows on infinite swept wedges and infinite swept wings to impulsive forcing is examined using causal linear stability theory. Following the discovery by Lingwood (1995) of the presence of absolute instabilities caused by pinch points occurring in the radial direction in the boundary layer flow of a rotating disk, we search for pinch points in the cross flow direction for both the model Falkner–Skan–Cooke profile of a swept wedge and for a genuine swept-wing configuration. It is shown in both cases that, within a particular range of the parameter space, the boundary layer does indeed support pinch points in the wavenumber plane corresponding to the crossflow direction. These crossflow-induced pinch points do not constitute an absolute instability, as there is no simultaneous pinch occurring in the streamwise wavenumber plane, but nevertheless we show here how they can be used to find the maximum local growth rate contained in a wavepacket travelling in any given direction. Lingwood (1997) also found pinch points in the chordwise wavenumber plane in the boundary layer of the leading-edge region of a swept wing (i.e. at very high flow angles). The results presented in this paper, however, demonstrate the presence of pinch points for a much larger range of flow angles and pressure gradients than was found by Lingwood, and indeed describe the flow over a much greater, and practically significant, portion of the wing.


Sign in / Sign up

Export Citation Format

Share Document