scholarly journals A Multilayer Hybrid Machine Learning Model for Diabetes Detection

2020 ◽  
Vol 32 ◽  
pp. 03032
Author(s):  
Sahil Parab ◽  
Piyush Rathod ◽  
Durgesh Patil ◽  
Vishwanath Chikkareddi

Diabetes Detection has been one of the many challenges which is being faced by the medical as well as technological communities. The principles of machine learning and its algorithms is used in order to detect the possibility of a diabetic patient based on their level of glucose concentration , insulin levels and other medically point of view required test reports. The basic diabetes detection model uses Bayesian classification machine learning algorithm, but even though the model is able to detect diabetes, the efficiency is not acceptable at all times because of the drawbacks of the single algorithm of the model. A Hybrid Machine Learning Model is used to overcome the drawbacks produced by a single algorithm model. A Hybrid Model is constructed by implementing multiple applicable machine learning algorithms such as the SVM model and Bayesian’s Classification model or any other models in order to overcome drawbacks faced by each other and also provide their mutually contributed efficiency. In a perfect case scenario the new hybrid machine learning model will be able to provide more efficiency as compared to the old Bayesian’s classification model.

Author(s):  
Rohan Benhal

Abstract: Machine learning-based (IDS) have become a critical component of safeguarding our economic and national security because of the massive quantities of data produced each day and the growing interconnection of the world's Internet infrastructures. The existing machine Learning Model technique may have difficulty comprehending the ever-increasingly complex distribution of data invasion patterns. With a small number of data points, a single deep learning algorithm may be ineffective at capturing different patterns for intrusive attacks. We presented CNN-LSTM Novel Intrusion Detection Model for Big Data to improve the efficiency of IDS-based CNN-LSTM even further (NIDM). NIDM uses behavioural traits and content functions to understand the characteristics when compared to earlier single learning model tactics, this strategy can improve the rate of intrusive attack detection. Keywords: IDS, Machine Learning, LSTM, CNN.


2021 ◽  
Vol 1916 (1) ◽  
pp. 012208
Author(s):  
G Renugadevi ◽  
G Asha Priya ◽  
B Dhivyaa Sankari ◽  
R Gowthamani

Author(s):  
Jia Luo ◽  
Dongwen Yu ◽  
Zong Dai

It is not quite possible to use manual methods to process the huge amount of structured and semi-structured data. This study aims to solve the problem of processing huge data through machine learning algorithms. We collected the text data of the company’s public opinion through crawlers, and use Latent Dirichlet Allocation (LDA) algorithm to extract the keywords of the text, and uses fuzzy clustering to cluster the keywords to form different topics. The topic keywords will be used as a seed dictionary for new word discovery. In order to verify the efficiency of machine learning in new word discovery, algorithms based on association rules, N-Gram, PMI, andWord2vec were used for comparative testing of new word discovery. The experimental results show that the Word2vec algorithm based on machine learning model has the highest accuracy, recall and F-value indicators.


Author(s):  
Xianping Du ◽  
Onur Bilgen ◽  
Hongyi Xu

Abstract Machine learning for classification has been used widely in engineering design, for example, feasible domain recognition and hidden pattern discovery. Training an accurate machine learning model requires a large dataset; however, high computational or experimental costs are major issues in obtaining a large dataset for real-world problems. One possible solution is to generate a large pseudo dataset with surrogate models, which is established with a smaller set of real training data. However, it is not well understood whether the pseudo dataset can benefit the classification model by providing more information or deteriorates the machine learning performance due to the prediction errors and uncertainties introduced by the surrogate model. This paper presents a preliminary investigation towards this research question. A classification-and-regressiontree model is employed to recognize the design subspaces to support design decision-making. It is implemented on the geometric design of a vehicle energy-absorbing structure based on finite element simulations. Based on a small set of real-world data obtained by simulations, a surrogate model based on Gaussian process regression is employed to generate pseudo datasets for training. The results showed that the tree-based method could help recognize feasible design domains efficiently. Furthermore, the additional information provided by the surrogate model enhances the accuracy of classification. One important conclusion is that the accuracy of the surrogate model determines the quality of the pseudo dataset and hence, the improvements in the machine learning model.


Author(s):  
George W Clark ◽  
Todd R Andel ◽  
J Todd McDonald ◽  
Tom Johnsten ◽  
Tom Thomas

Robotic systems are no longer simply built and designed to perform sequential repetitive tasks primarily in a static manufacturing environment. Systems such as autonomous vehicles make use of intricate machine learning algorithms to adapt their behavior to dynamic conditions in their operating environment. These machine learning algorithms provide an additional attack surface for an adversary to exploit in order to perform a cyberattack. Since an attack on robotic systems such as autonomous vehicles have the potential to cause great damage and harm to humans, it is essential that detection and defenses of these attacks be explored. This paper discusses the plausibility of direct and indirect cyberattacks on a machine learning model through the use of a virtual autonomous vehicle operating in a simulation environment using a machine learning model for control. Using this vehicle, this paper proposes various methods of detection of cyberattacks on its machine learning model and discusses possible defense mechanisms to prevent such attacks.


2020 ◽  
Vol 2 (6) ◽  
Author(s):  
Rachel Cook ◽  
Keitumetse Cathrine Monyake ◽  
Muhammad Badar Hayat ◽  
Aditya Kumar ◽  
Lana Alagha

Sign in / Sign up

Export Citation Format

Share Document