HIGH EFFICIENCY, LARGE-AREA PHOTOVOLTAIC DEVICES USING AMORPHOUS Si : F : H ALLOY

1981 ◽  
Vol 42 (C4) ◽  
pp. C4-463-C4-466
Author(s):  
A. Madan ◽  
W. Czubatyj ◽  
J. Yang ◽  
J. McGill ◽  
S. R. Ovshinsky
Author(s):  
Chih-Wei Hsu ◽  
Jia-Min Shieh ◽  
Chang-Hong Shen ◽  
Jung Y. Huang ◽  
Hao-Chung Kuo ◽  
...  

1999 ◽  
Vol 557 ◽  
Author(s):  
A. Banerjee ◽  
J. Yang ◽  
S. Guha

AbstractA systematic approach has been used to scale up high efficiency 0.25cm2 active-area amorphous Si alloy based triple-junction devices to high-efficiency encapsulated modules of aperture area ~920cm2. In order to analyze the losses involved in the scale-up, intermediate aperture area, 40cm2 and 450cm2, modules have also been fabricated. The best stable active-area efficiency obtained on the small-area cells is 12.9%. The best initial efficiency of a ~920cm2 aperture area encapsulated module is 12.1%. National Renewable Energy Laboratory (NREL) has independently light soaked three of the ~920cm2 modules. They have measured a stable efficiency of 10.5% which represents a new world record. This paper presents various aspects of the large-area module work.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peipei Du ◽  
Jinghui Li ◽  
Liang Wang ◽  
Liang Sun ◽  
Xi Wang ◽  
...  

AbstractWith rapid advances of perovskite light-emitting diodes (PeLEDs), the large-scale fabrication of patterned PeLEDs towards display panels is of increasing importance. However, most state-of-the-art PeLEDs are fabricated by solution-processed techniques, which are difficult to simultaneously achieve high-resolution pixels and large-scale production. To this end, we construct efficient CsPbBr3 PeLEDs employing a vacuum deposition technique, which has been demonstrated as the most successful route for commercial organic LED displays. By carefully controlling the strength of the spatial confinement in CsPbBr3 film, its radiative recombination is greatly enhanced while the nonradiative recombination is suppressed. As a result, the external quantum efficiency (EQE) of thermally evaporated PeLED reaches 8.0%, a record for vacuum processed PeLEDs. Benefitting from the excellent uniformity and scalability of the thermal evaporation, we demonstrate PeLED with a functional area up to 40.2 cm2 and a peak EQE of 7.1%, representing one of the most efficient large-area PeLEDs. We further achieve high-resolution patterned perovskite film with 100 μm pixels using fine metal masks, laying the foundation for potential display applications. We believe the strategy of confinement strength regulation in thermally evaporated perovskites provides an effective way to process high-efficiency and large-area PeLEDs towards commercial display panels.


2001 ◽  
Vol 13 (12) ◽  
pp. 1349-1351 ◽  
Author(s):  
M. Gokkavas ◽  
O. Dosunmu ◽  
M.S. Unlu ◽  
G. Ulu ◽  
R.P. Mirin ◽  
...  

2018 ◽  
Vol 170 ◽  
pp. 07010 ◽  
Author(s):  
Vladimir D. Ryzhikov ◽  
Sergei V. Naydenov ◽  
Thierry Pochet ◽  
Gennadiy M. Onyshchenko ◽  
Leonid A. Piven ◽  
...  

We have developed and evaluated a new approach to fast neutron and neutron-gamma detection based on large-area multilayer composite heterogeneous detection media consisting of dispersed granules of small-crystalline scintillators contained in a transparent organic (plastic) matrix. Layers of the composite material are alternated with layers of transparent plastic scintillator material serving as light guides. The resulting detection medium – designated as ZEBRA – serves as both an active neutron converter and a detection scintillator which is designed to detect both neutrons and gamma-quanta. The composite layers of the ZEBRA detector consist of small heavy-oxide scintillators in the form of granules of crystalline BGO, GSO, ZWO, PWO and other materials. We have produced and tested the ZEBRA detector of sizes 100x100x41 mm and greater, and determined that they have very high efficiency of fast neutron detection (up to 49% or greater), comparable to that which can be achieved by large sized heavy-oxide single crystals of about Ø40x80 cm3 volume. We have also studied the sensitivity variation to fast neutron detection by using different types of multilayer ZEBRA detectors of 100 cm2 surface area and 41 mm thickness (with a detector weight of about 1 kg) and found it to be comparable to the sensitivity of a 3He-detector representing a total cross-section of about 2000 cm2 (with a weight of detector, including its plastic moderator, of about 120 kg). The measured count rate in response to a fast neutron source of 252Cf at 2 m for the ZEBRA-GSO detector of size 100x100x41 mm3 was 2.84 cps/ng, and this count rate can be doubled by increasing the detector height (and area) up to 200x100 mm2. In summary, the ZEBRA detectors represent a new type of high efficiency and low cost solid-state neutron detector that can be used for stationary neutron/gamma portals. They may represent an interesting alternative to expensive, bulky gas counters based on 3He or 10B neutron detection technologies.


2021 ◽  
pp. 2109968
Author(s):  
Xiaojia Xu ◽  
Xiaoyu Ji ◽  
Rui Chen ◽  
Fangyuan Ye ◽  
Shuaijun Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document