scholarly journals Design and Implementation of PLC-Based Automatic Sun tracking System for Parabolic Trough Solar Concentrator

2016 ◽  
Vol 77 ◽  
pp. 06006 ◽  
Author(s):  
Jinping Wang ◽  
Jun Zhang ◽  
Yanfeng Cui ◽  
Xiaolong Bi
2020 ◽  
Vol 15 (4) ◽  
pp. 613-619
Author(s):  
Li Kong ◽  
Yunpeng Zhang ◽  
Zhijian Lin ◽  
Zhongzhu Qiu ◽  
Chunying Li ◽  
...  

Abstract The present work aimed to select the optimum solar tracking mode for parabolic trough concentrating collectors using numerical simulation. The current work involved: (1) the calculation of daily solar radiation on the Earth’s surface, (2) the comparison of annual direct solar radiation received under different tracking modes and (3) the determination of optimum tilt angle for the north-south tilt tracking mode. It was found that the order of solar radiation received in Shanghai under the available tracking modes was: dual-axis tracking > north-south Earth’s axis tracking > north-south tilt tracking (β = 15°) > north-south tilt tracking (β = 45) > north-south horizontal tracking > east-west horizontal tracking. Single-axis solar tracking modes feature simple structures and low cost. This study also found that the solar radiation received under the north-south tilt tracking mode was higher than that of the north-south Earth’s axis tracking mode in 7 out of 12 months. Therefore, the north-south tilt tracking mode was studied separately to determine the corresponding optimum tilt angles in Haikou, Lhasa, Shanghai, Beijing and Hohhot, respectively, which were shown as follows: 18.81°, 27.29°, 28.67°, 36.21° and 37.97°.


2012 ◽  
Vol 562-564 ◽  
pp. 1772-1775
Author(s):  
Shakeel Akram ◽  
Farhan Hameed Malik ◽  
Rui Jin Liao ◽  
Bin Liu ◽  
Tariq Nazir

Due to the complex design and high costs of production, solar thermal systems have fallen behind in the world of alternative energy systems. Different mechanisms are applied to increase the efficiency of the solar collectors and to reduce the cost. Solar tracking system is the most appropriate technology to increase the efficiency of solar collectors as well as solar power plants by tracking the sun timely. In order to maximize the efficiency of collectors, one needs to keep the reflecting surface of parabolic trough collectors perpendicular to the sun rays. For this purpose microcontroller based real time sun tracker is designed which is controlled by an intelligent algorithm using shadow technique. The aim of the research project is to test the solar-to-thermal energy efficiency by tracking parabolic trough collector (PTC). The energy efficiency is determined by measuring the temperature rise of working fluid as it flows through the receiver of the collector when it is properly focused. The design tracker is also simulated to check its accuracy. The main purpose to design this embedded system is to increase the efficiency and reliability of solar plants by reducing size, complexity and cost of product.


2014 ◽  
Vol 63 ◽  
pp. 292-296 ◽  
Author(s):  
L. Salgado Conrado ◽  
J.A. Meda Campaña ◽  
C. Palacios Montufar

2017 ◽  
Vol 129 ◽  
pp. 700-707 ◽  
Author(s):  
U. Caldiño-Herrera ◽  
Laura Castro ◽  
O.A. Jaramillo ◽  
J.C. Garcia ◽  
Gustavo Urquiza ◽  
...  

Author(s):  
Samuel Davies ◽  
Sivagunalan Sivanathan ◽  
Ewen Constant ◽  
Kary Thanapalan

AbstractThis paper describes the design of an advanced solar tracking system development that can be deployed for a range of applications. The work focused on the design and implementation of an advanced solar tracking system that follow the trajectory of the sun’s path to maximise the power capacity generated by the solar panel. The design concept focussed on reliability, cost effectiveness, and scalability. System performance is of course a key issue and is at the heart of influencing the hardware, software and mechanical design. The result ensured a better system performance achieved. Stability issues were also addressed, in relation to optimisation and reliability. The paper details the physical tracker device developed as a prototype, as well as the proposed advanced control system for optimising the tracking.


Sign in / Sign up

Export Citation Format

Share Document