scholarly journals 2 Dimensional Hydrodynamic Flood Routing Analysis on Flood Forecasting Modelling for Kelantan River Basin

2016 ◽  
Vol 87 ◽  
pp. 01016 ◽  
Author(s):  
Wan Hazdy Azad ◽  
Lariyah Mohd Sidek ◽  
Hidayah Basri ◽  
Chow Ming Fai ◽  
Suhani Saidin ◽  
...  
2018 ◽  
Vol 203 ◽  
pp. 07001
Author(s):  
Sazali Osman ◽  
Norizan Abdul Aziz ◽  
Nurul Husaif ◽  
Lariyah Mohd Sidek ◽  
Aminah Shakirah ◽  
...  

Flood is without doubt the most devastating natural disasters, striking numerous regions in Malaysia each year. During the last decades, the trend in flood damages has been growing exponentially. This is a consequence of the increasing frequency of heavy rain, changes in upstream land-use and a continuously increasing concentration of population and assets in flood prone areas. Malaysia, periodically, have faced with huge floods since previous years. Kelantan River basin, which located in the Northeast of Peninsular Malaysia, is prone to flood events in Malaysia. Kelantan River is the principal cause of flooding because it is constricted at its lower reaches. The capacity of the river at the downstream coastal area is less than 10,000 m3/s, therefore flood that exceeds this capacity will overspill the banks and discharge overland to the sea. Realizing the seriousness of the problems, it is vital in providing in time useful information for making crucial decisions especially to provide warning for any potential flood occurrence. In this study, stochastic flood forecasting model using stage regression method was applied to Kelantan River basin, in which the regression coefficients and equations was derived from the least square principle. The stochastic model were calibrated and validated which then shows that the equations derived are suitable to predict the hydrograph in Kelantan River basin. In conclusion, establishing a flood forecasting system would enhance the effectiveness of all other mitigation measures by providing time for appropriate actions. This has increased the importance of flood modelling for flood forecasts to issue advance warning in severe storm situations to reduce loss of lives and property damage.


2013 ◽  
Vol 61 (3) ◽  
pp. 177-187 ◽  
Author(s):  
Chen Minghong ◽  
Fang Hongwei ◽  
Zheng Yi ◽  
He Guojian

Abstract Beiyun River Basin is holistically suffering a water shortage and relatively concentrated flood risk. The current operation (level-control) of dams and floodgates, which is in passive defense mode, cannot meet the demands of both flood control and storm water resources. An integrated flood forecasting and management system is developed by the connecting of the hydrological model and hydrodynamic model and coupling of the hydrodynamic model and hydraulic model for dams and floodgates. Based upon the forecasted runoff processes, a discharge-control operation mode of dams and floodgates is proposed to be utilized in order to well regulate the flood routing in channels. The simulated water level, discharge, and water storage volume under different design conditions of rainfall return periods and floodgates operation modes are compared. The results show that: (1) for small floods, current operation modes can satisfy the objectives, but discharge-control operation can do better; (2) for medium size floods, since pre-storing of the floods affects the discharge of follow-up floods by floodgates, the requirement of flood control cannot be satisfied under current operations, but the discharge-control operation can; (3) for large floods, neither operation can meet the requirement because of the limited storage of these dams. Then, the gravel pits, wetlands, ecological lakes and flood detention basins around the river must be used for excess flood waters. Using the flood forecasting and management system can change passive defense to active defense mode, solving the water resources problem of Beijing city and Beiyun River Basin to a certain extent.


2001 ◽  
Author(s):  
Joo Heon Lee ◽  
Do Hun Lee ◽  
Sang Man Jeong ◽  
Eun Tae Lee

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1513
Author(s):  
Yar M. Taraky ◽  
Yongbo Liu ◽  
Ed McBean ◽  
Prasad Daggupati ◽  
Bahram Gharabaghi

The Kabul River, while having its origin in Afghanistan, has a primary tributary, the Konar River, which originates in Pakistan and enters Afghanistan near Barikot-Arandu. The Kabul River then re-enters Pakistan near Laalpur, Afghanistan making it a true transboundary river. The catastrophic flood events due to major snowmelt events in the Hindu Kush mountains occur every other year, inundating many major urban centers. This study investigates the flood risk under 30 climate and dam management scenarios to assess opportunities for transboundary water management strategy in the Kabul River Basin (KRB). The Soil and Water Assessment Tool (SWAT) is a watershed-scale hydraulic modeling tool that was employed to forecast peak flows to characterize flood inundation areas using the river flood routing modelling tool Hydrologic Engineering Center - River Analysis System -HEC-RAS for the Nowshera region. This study shows how integrated transboundary water management in the KRB can play a vital catalyst role with significant socio-economic benefits for both nations. The study proposes a KRB-specific agreement, where flood risk management is a significant driver that can bring both countries to work together under the Equitable Water Resource Utilization Doctrine to save lives in both Afghanistan and Pakistan. The findings show that flood mitigation relying on collaborative efforts for both upstream and downstream riparian states is highly desirable.


2021 ◽  
Author(s):  
Abebe Tadesse Bulti

Abstract An advancement on flood routing techniques is important for a good perdiction and forecast of the flow discharge in a river basins. Hydraulic and hydrologic routing techniques are widely applied in most simulation models separately. A combined hydrologic and hydraulic routing method is a recent approach that used to improve the modeling effort in hydrological studies. The main drawback of hydrologic routing methods was inaccuracy on downstream areas of the river basin, where the effect of hydraulic structures and the river dynamics processes are dominant. The hydraulic routing approaches are relatively good on a downstream reaches of a river. This research was done on the Awash River basin, at the upstream areas of a Koka dam. A combined hydrologic and hydraulic approach was used to assess the discharge and sediment flow in the river basin. The hydrologic routing method was applied at an upstream part of a river basin through a SWAT model. HEC-RAS model was applied at the middle and downstream areas of the study basin based on hydraulic routing principle. A combined routing method can improve the result from a simulation process and increases an accuracy on a prediction of the peak flow. It can simulate a flow discharges for both short and long-term duration, with good model performance indicators. Besides, sediment modeling was done by comparing a regression model, SWAT model, and combination of HEC-RAS and SWAT model. The result from the sediment modeling indicates that the regression model and combined model show good agreement in predicting the suspended sediment in the river basin. The integrated application of such different type of models can be one of the option for sediment modeling.


Author(s):  
H.Y. Abdul

Over the years, flood is one of the natural hazards which occur all over the world and it is critical to be controlled through proper management. Flood in Kelantan is mainly caused by heavy rainfall brought by the Northeast monsoon starting from November to March every year. It is categorized as annual flood as it occurs every year during the Monsoon season. Severe flood events in Kelantan, Malaysia cause damage to both life and property every year and understanding landscape structure changes is very important for planners and decision makers for future land use planning and management. This research aims to quantify the landscape structure near to Kelantan River basin during the flood event using integrated approach of remote sensing (RS), geographic information system (GIS) technique and landscape ecological approach. As a result, this study provide new knowledge on landscape structure that contributes to understand the impact of flood events and provide the best ways to mitigate flooding for helping to protect biodiversity habitat and dwellers. As conclusions, this kind of study will give more benefits to various stakeholders such as Department of Irrigation and Drainage, Department of Environment, state government, fisherman and communities.


Sign in / Sign up

Export Citation Format

Share Document