scholarly journals The influence of metahalloysite addition on tobermorite formation studied by X-ray powder diffraction and scanning electron microscope

2018 ◽  
Vol 163 ◽  
pp. 05008
Author(s):  
Anna Skawińska

This paper presents the results of the studies carried out in the model systems and concerning the tobermorite synthesis with an addition of metahalloysite. Quartz sand and quicklime were the main raw material constituents. The mixtures in the form of slurries underwent hydrothermal treatment with an addition of metahalloysite (5%, 10%, 15%, 20% and 30%) for 4 hours and 12 hours. The resultant composites were analysed for their phase composition using X-ray powder diffraction. The microstructure was examined using the Scanning Electron Microscope. Tobermorite was the principle reaction product. When 30% metahalloysite was added to the mixture containing CaO and SiO2, the formation of katoite was found.

2011 ◽  
Vol 117-119 ◽  
pp. 870-872
Author(s):  
Shi Cai Cui ◽  
Zhao Bo Meng

Calcium silicate for filling material used in dissolved acetylene cylinders was prepared by adding alum as additive. Samples were characterized by X-ray powder diffraction (XRD) and scanning electron microscope (SEM). The effects of alum on the bleeding, shrinkage, strength, porosity, morphology and phase composition were studied. The experimental results show that the adding of alum can improve the comprehensive performance of samples. The mechanism was discussed in detail.


2012 ◽  
Vol 620 ◽  
pp. 384-388
Author(s):  
Sharifah Aishah Syed Salim ◽  
Julie Juliewatty Mohamed ◽  
Zainal Arifin Ahmad ◽  
Zainal Arifin Ahmad

Numerous methods have been used to produce high purity TiC. There is no previous study has been reported on the formation using single elemental powders of Titanium (Ti) and Carbon (C) with addition Nickel (Ni) by tungsten inert gas (TIG) weld method. In this work, TiC was synthesized via TIG method by arc melting elemental powder mixture of Ti and C at ~5 second (s) and 80 ampere (A). The effect Ni contents on TiC formation was investigated. The mixed raw material was ball milled for 24 hours followed by synthesis via TIG method. The arced samples were characterized by X-ray diffraction (XRD) and Scanning electron microscope (SEM). It was revealed, that small amount of Ni additive to the metal powder allows the production of dense and tough TiC.


Author(s):  
Kezhen Qi ◽  
Ruidan Wang ◽  
Jiaqi Fu ◽  
Ke Chen ◽  
Chunying Zuo

Hierarchical ZnO crystals with flower-like microstructures were successfully synthesized via a facile hydrothermal route without using any surfactants. The morphology of these microstructures can be easily controlled by adjusting the pH of the reaction solution. The products were characterized by X-ray powder diffraction (XRD) and scanning electron microscope (SEM). Furthermore, a possible growth mechanism of ZnO hierarchical microstructures was proposed.  


Author(s):  
Dewi Elok Rahmawati ◽  
Lilik Miftahul Khoiroh ◽  
Rachmawati Ningsih ◽  
Febi Yusniyanti ◽  
Wariatus Solawati ◽  
...  

<p class="02abstracttext"><span lang="PT-BR">Iron lathe waste powder has the potential as a raw material in the synthesis of hematite pigments. Hematite pigments have many advantages, one of which is anti-swelling properties that can maintain the dimensions of wood. Hematite pigment synthesis was carried out using the precipitation-sonication method. The precipitation stage uses an ammonium hydroxide solution as a precipitating agent. Stages of sonication using the PEG-6000 template were performed at different times were 30, 45, and 90 minutes then calcined at 750 ° C for 3 hours. The samples were characterized by X-ray diffraction (XRD), color reader, and scanning electron microscope-energy dispersive <br /> X-Ray (SEM-EDX). The result confirmed that a ferrihydrite phase obtained after the precipitation process and transform into hematite after the calcination process with the highest degree of crystallinity for 90-minute sonication. From a color reader, the brightness and redness degrees decrease with increasing time. Scanning electron microscope results illustrated that the morphology was not uniform with the particle size getting smaller with increasing sonication time. The EDX results show that hematite pigments still contain impurities such as carbon. The swelling test indicated that the highest stability in hematite-pigmented wood increased as increasing in the weight of pigment.</span></p>


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jing Wang ◽  
Yang Liu ◽  
Yang Jiao ◽  
Fengyu Qu ◽  
Qingzhi Pan ◽  
...  

The well-aligned Ag2O/ZnO microflowers heterostructure was synthesized by a straightforward two-step procedure. The diameters of the as-synthesized products were as much as 1.5 μm. The as-grown Ag2O/ZnO heterostructure was investigated by X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and photoluminescence (PL) spectroscopy analysis. A possible growth mechanism for flowerlike Ag2O/ZnO heterostructure was proposed based on the experimental results. Compared with pure ZnO microflowers, PL spectrum of the composite with only one strong peak at 383 nm showed good intrinsic emission.


2020 ◽  
pp. 82-89
Author(s):  
Paweł Iwański ◽  
Bartłomiej Igliński ◽  
Grzegorz Piechota

The article presents carbonization as a method of waste management from the brine sodium-lime method. It was compared with the previously obtained results for the lye-sodium one. Within it, the fltration and washing times were contrasted for treated and non-carbonised samples. For this aim potentiometric titration analysis was used to determine the precipitation's basic components and by-product brine. Scanning electron microscope with energy dispersive X-ray spectrum and diffractographic analysis were used for morphology analysis what allowed to determine the tested samples' composition. It was found that despite significant differences in the time of washing and filtration, the time of these processes is shortened after the suspension has been exposed to carbon dioxide. In both cases the composition allows the waste brine to be recycled to the purifcation processes and the mixture of calcium and magnesium compounds become alternative raw material. It turned out that in both methods it is possible to utilize the suspension formed.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1435
Author(s):  
Olev Vinn

Aragonite plays an important role in the biomineralization of serpulid polychaetes. Aragonitic structures are present in a wide range of serpulid species, but they mostly belong to one clade. Aragonitic structures are present in a wide range of marine environments, including the deep ocean. Aragonitic tube microstructures were studied using a scanning electron microscope. X-ray powder diffraction was used to identify the aragonite. Aragonite is used to build five different types of microstructures in serpulid tubes. The most common aragonitic irregularly oriented prismatic structure (AIOP) is also, evolutionarily, the most primitive. Some aragonitic microstructures, such as the spherulitic prismatic (SPHP) structure, have likely evolved from the AIOP structure. Aragonitic microstructures in serpulids are far less numerous than calcitic microstructures, and they lack the complexity of advanced calcitic microstructures. The reason why aragonitic microstructures have remained less evolvable than calcitic microstructures is currently unknown, considering their fit with the current aragonite sea conditions (Paleogene–recent).


2022 ◽  
Author(s):  
RongMin Cheng ◽  
Conghong Zhan ◽  
Juanjuan Gao

Using Ni foam as a template, Mn0.6Ni0.4CO3 nanosheet assembles were synthesized by hydrothermal method and calcination treatment. X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), Inductively...


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 357
Author(s):  
János Kovács ◽  
Éva Farics ◽  
Péter Szabó ◽  
István Sajó

In sedimentary rocks, Fe-Al phosphate minerals occur in different rocks and depositional environments. Herein, we present microcrystals of wavellite, crandallite, and cacoxenite from pedogenic goethite pisoliths and nodules. Pisoliths and nodules are generally dominated by Fe oxides and oxihydroxides. Frequently, pisoliths and nodules demonstrate high phosphatization and a substantial contribution of allogenic detritus. The aim of our study is to present these remarkable crystals found in goethites. We describe the geochemistry and mineralogy of the pisoliths and try to interpret the possible paragenesis of the minerals. Loose ferruginous pisoliths and nodules are separated from the red paleosol and analyzed using field emission scanning electron microscope (FE-SEM) coupled with the energy dispersive X-ray detector (EDS), X-ray fluorescence spectroscopy (XRF), and X-ray powder diffraction (XRD) methods. The studied paleosols are weathered in a subtropical climate and the newly formed precipitation products, such as crandallite, wavellite, cacoxenite, and goethite, accumulate during the weathering of apatite.


2014 ◽  
Vol 881-883 ◽  
pp. 1568-1571
Author(s):  
Zhi Qiang Ning ◽  
Ling Ling Zhang

The phase composition and particle size of the boron mud is investigated by X-ray diffractometry (XRD), scanning electron microscope (SEM) and laser particle size analyzer. The mainly phase composition of the boron mud are magnesite (MgCO3) and forsterite (Mg2SiO4). The mainly phase composition of the calcined boron mud are forsterite (Mg2SiO4) and a small amount magnesia (MgO). the sizes of the boron mud are about 2~6μm and a few of them are bigger and less than 10μm and the particle size of less than 10μm is about 60%.


Sign in / Sign up

Export Citation Format

Share Document