scholarly journals Influence of thermo-gravitational convection to temperature fields in small surroundings of the heat source

2018 ◽  
Vol 194 ◽  
pp. 01028
Author(s):  
Alexander Kondakov

The mathematical modeling of temperature and velocity fields in the system “the heat source - environment - the object of heating” was conducted. The impact assessment of thermo-gravitational convection to the temperature field in comparison with the model of conductive heat transfer was done.

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 178
Author(s):  
Mohammed Alghaseb ◽  
Walid Hassen ◽  
Abdelhakim Mesloub ◽  
Lioua Kolsi

In this study, a 3D numerical study of free ventilated room equipped with a discrete heat source was performed using the Finite Volume Method (FVM). To ensure good ventilation, two parallel openings were created in the room. A suction opening was located at the bottom of the left wall and another opening was located at the top of the opposite wall; the heat source was placed at various positions in order to compare the heating efficiency. The effects of Rayleigh number (103 ≤ Ra ≤ 106) for six heater positions was studied. The results focus on the impact of these parameters on the particle trajectories, temperature fields and on the heat transfer inside the room. It was found that the position of the heater has a dramatic effect on the behavior and topography of the flow in the room. When the heat source was placed on the wall with the suction opening, two antagonistic behaviors were recorded: an improvement in heat transfer of about 31.6%, compared to the other positions, and a low Rayleigh number against 22% attenuation for high Ra values was noted.


1987 ◽  
Vol 109 (4) ◽  
pp. 912-918 ◽  
Author(s):  
J. R. Parsons ◽  
M. L. Arey

Experiments have been performed which describe the transient development of natural convective flow from both a single and two vertically aligned horizontal cylindrical heat sources. The temperature of the wire heat sources was monitored with a resistance bridge arrangement while the development of the flow field was observed optically with a Mach–Zehnder interferometer. Results for the single wire show that after an initial regime where the wire temperature follows pure conductive response to a motionless fluid, two types of fluid motion will begin. The first is characterized as a local buoyancy, wherein the heated fluid adjacent to the wire begins to rise. The second is the onset of global convective motion, this being governed by the thermal stability of the fluid layer immediately above the cylinder. The interaction of these two motions is dependent on the heating rate and relative heat capacities of the cylinder and fluid, and governs whether the temperature response will exceed the steady value during the transient (overshoot). The two heat source experiments show that the merging of the two developing temperature fields is hydrodynamically stabilizing and thermally insulating. For small spacing-to-diameter ratios, the development of convective motion is delayed and the heat transfer coefficients degraded by the proximity of another heat source. For larger spacings, the transient behavior approaches that of a single isolated cylinder.


Author(s):  
AS Sabu ◽  
Joby Mackolil ◽  
B Mahanthesh ◽  
Alphonsa Mathew

The study focuses on the aggregation kinematics in the quadratic convective magneto-hydrodynamics of ethylene glycol-titania ([Formula: see text]) nanofluid flowing through an inclined flat plate. The modified Krieger-Dougherty and Maxwell-Bruggeman models are used for the effective viscosity and thermal conductivity to account for the aggregation aspect. The effects of an exponential space-dependent heat source and thermal radiation are incorporated. The impact of pertinent parameters on the heat transfer coefficient is explored by using the Response Surface Methodology and Sensitivity Analysis. The effects of several parameters on the skin friction and heat transfer coefficient at the plate are displayed via surface graphs. The velocity and thermal profiles are compared for two physical scenarios: flow over a vertical plate and flow over an inclined plate. The nonlinear problem is solved using the Runge–Kutta-based shooting technique. It was found that the velocity profile significantly decreased as the inclination of the plate increased on the other hand the temperature profile improved. The heat transfer coefficient decreased due to the increase in the Hartmann number. The exponential heat source has a decreasing effect on the heat flux and the angle of inclination is more sensitive to the heat transfer coefficient than other variables. Further, when radiation is incremented, the sensitivity of the heat flux toward the inclination angle augments at the rate 0.5094% and the sensitivity toward the exponential heat source augments at the rate 0.0925%. In addition, 41.1388% decrement in wall shear stress is observed when the plate inclination is incremented from [Formula: see text] to [Formula: see text].


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Abdullatif Ben-Nakhi ◽  
M. M. Eftekhari ◽  
D. I. Loveday

A computational study of steady, laminar, natural convective fluid flow in a partially open square enclosure with a highly conductive thin fin of arbitrary length attached to the hot wall at various levels is considered. The horizontal walls and the partially open vertical wall are adiabatic while the vertical wall facing the partial opening is isothermally hot. The current work investigates the flow modification due to the (a) attachment of a highly conductive thin fin of length equal to 20%, 35%, or 50% of the enclosure width, attached to the hot wall at different heights, and (b) variation of the size and height of the aperture located on the vertical wall facing the hot wall. Furthermore, the study examines the impact of Rayleigh number (104⩽Ra⩽107) and inclination of the enclosure. The problem is put into dimensionless formulation and solved numerically by means of the finite-volume method. The results show that the presence of the fin has counteracting effects on flow and temperature fields. These effects are dependent, in a complex way, on the fin level and length, aperture altitude and size, cavity inclination angle, and Rayleigh number. In general, Nusselt number is directly related to aperture altitude and size. However, after reaching a peak Nusselt number, Nusselt number may decrease slightly if the aperture’s size increases further. The impact of aperture altitude diminishes for large aperture sizes because the geometrical differences decrease. Furthermore, a longer fin causes higher rate of heat transfer to the fluid, although the equivalent finless cavity may have higher heat transfer rate. In general, the volumetric flow rate and the rate of heat loss from the hot surfaces are interrelated and are increasing functions of Rayleigh number. The relationship between Nusselt number and the inclination angle is nonlinear.


Author(s):  
Yeong-Ley Tsay ◽  
Jen-Chieh Cheng ◽  
Yong-Lin Zhuang

A numerical analysis is performed to study the characteristics of heat transfer from a block heat source module at different angles in two-dimensional cabinets. Great efforts are carried out to conduct the effects of thermal interaction between the air steams inside and outside the cabinet on the conjugate conduction–natural convection phenomena. Moreover, the enhancement of cooling performance of the heat source module through the construction of air vents on cabinet wall is rigorously examined. The computation domain covers the cabinet and the surrounding area, and the temperature and velocity fields of the cabinet and surrounding area are solved simultaneously. Results show that the thermal interaction between the airs inside and outside the cabinet, the module angle and vent position can significantly affect the transfer characteristics. Comparing the results for cases with and without the consideration of thermal interaction between the air streams, the difference in hot spot temperature of module can be up to 26% for Pr = 0.7, Kbf = Kpf = Kwf = 100, 105 ≦ Ra ≦ 107 and φ = 0°, 90°, 270°. The maximum reduction in hot spot temperature is about 41% when two air vents are constructed on cabinet wall. The variation of module angle results in the maximum difference of the hot spot temperature is 15% for closed cabinet, and 10% for ventilated cabinet.


Author(s):  
R. Bergant ◽  
I. Tiselj

In the present paper a role of the smallest diffusive scales of a passive scalar field in the near-wall turbulent flow was examined with pseudo-spectral numerical simulations. Temperature fields were analyzed at friction Reynolds number Reτ = 170.8 and at Prandtl number, Pr = 5.4. Results of direct numerical simulation (DNS) were compared with the under-resolved simulation where the velocity field was still resolved with the DNS accuracy, while a coarser grid was used to describe the temperature field. Since the smallest temperature scales remained unresolved in this simulation, an appropriate spectral turbulent thermal diffusivity was applied to avoid pileup at higher wave numbers. In spite of coarser numerical grid, the temperature field is still highly correlated with the DNS results, and thus point to practically negligible role of the diffusive temperature scales on the macroscopic behavior of the turbulent heat transfer.


Author(s):  
Angela Wu ◽  
Seunghwan Keum ◽  
Volker Sick

In this study, the effects of the thermal boundary conditions at the engine walls on the predictions of Large-Eddy Simulations (LES) of a motored Internal Combustion Engine (ICE) were examined. Two thermal boundary condition cases were simulated. One case used a fixed, uniform wall temperature, which is typically used in conventional LES modeling of ICEs. The second case utilized a Conjugate Heat Transfer (CHT) modeling approach to obtain temporally and spatially varying wall temperature. The CHT approach solves the coupled heat transfer problem between fluid and solid domains. The CHT case included the solid valves, piston, cylinder head, cylinder liner, valve seats, and spark plug geometries. The simulations were validated with measured bulk flow, near-wall flow, surface temperature, and surface heat flux. The LES quality of both simulations was also discussed. The CHT results show substantial spatial, temporal, and cyclic variability of the wall heat transfer. The surface temperature dynamics obtained from the CHT model compared well with measurements during the compression stroke, but the absolute magnitude was 5 K (or 1.4%) off and the prediction of the drop in temperature after top dead center suffered from temporal resolution limitations. Differences in the predicted flow and temperature fields between the uniform surface temperature and CHT simulations show the impact of the surface temperature on bulk behavior.


2005 ◽  
Vol 127 (5) ◽  
pp. 486-498 ◽  
Author(s):  
Mayank Tyagi ◽  
Sumanta Acharya

Large eddy simulations are performed in a periodic domain of a rotating square duct with normal rib turbulators. Both the Coriolis force as well as the centrifugal buoyancy forces are included in this study. A direct approach is presented for the unsteady calculation of the nondimensional temperature field in the periodic domain. The calculations are performed at a Reynolds number (Re) of 12,500, a rotation number (Ro) of 0.12, and an inlet coolant-to-wall density ratio Δρ/ρ of 0.13. The predicted time and space-averaged Nusselt numbers are shown to compare satisfactorily with the published experimental data. Time sequences of the vorticity components and the temperature fields are presented to understand the flow physics and the unsteady heat transfer behavior. Large scale coherent structures are seen to play an important role in the mixing and heat transfer. The temperature field appears to contain a low frequency mode that extends beyond a single inter-rib geometric module, and indicates the necessity of using at least two inter-rib modules for streamwise periodicity to be satisfied. Proper orthogonal decomposition (POD) of the flowfield indicates a low dimensionality of this system with almost 99% of turbulent energy in the first 80 POD modes.


Author(s):  
Mayank Tyagi ◽  
Sumanta Acharya

Large eddy simulations are performed in a periodic domain of a rotating square duct with normal rib turbulators. Both the Coriolis force as well as the centrifugal buoyancy force are included in this study. A direct approach is presented for the unsteady calculation of the non-dimensional temperature field in the periodic domain. The calculations are performed at a Reynolds number (Re) of 12, 500, a Rotation number (Ro) of 0.12 and an inlet coolant-to-wall density ratio (Δρ/ρ) of 0.13. The time-averaged Nusselt numbers compare satisfactorily with the data of Wagner et al. (J. Turbomachinery, Vol. 114, pp. 847–857). Time-sequences of the vorticity components and the temperature fields are presented to understand the flow physics and the unsteady heat transfer processes. Large scale coherent structures are seen to play an important role in the mixing and heat transfer. The temperature field appears to contain a low frequency mode that extends beyond a single inter-rib geometric module, and indicates the necessity of using at least two inter-rib modules for streamwise periodicity to be satisfied. Proper orthogonal decomposition (POD) of 200 snapshots indicates a low dimensionality of this system with almost 99% of turbulent energy in the first 80 POD modes.


Sign in / Sign up

Export Citation Format

Share Document