scholarly journals Selected aspects of numerical modelling in prediction of building vibrations due to traffic

2018 ◽  
Vol 196 ◽  
pp. 01055
Author(s):  
Sławomir Dudziak ◽  
Zofia Kozyra

Dynamic analyses play an important role in the process of designing buildings in the vicinity of transportation routes. The Finite Element Method is the most popular modelling technique, because it allows to simulate the structure response in the higher frequency range properly. However, the results of such analyses depend on many factors and can differ a lot. This paper discusses the impact of the building mass estimation and neglecting or including damping in the analysis on the assessment of influence of vibrations due to traffic on people.

2012 ◽  
Vol 190-191 ◽  
pp. 23-27
Author(s):  
Jin Sha ◽  
Zhi Yuan Yao ◽  
Yang Jiao

This paper proposes an ultrasonic knife system for MEMS packaging. The ultrasonic knife system is consisted of an ultrasonic transducer, a cutter and a gripper feeder. The ultrasonic transducer engenders high frequency vibration, which lead to the resonance of the structure. Amplitude transformer can magnify the amplitude. By the impact and collision of the cutter, the material can be cut through, and the high temperature created by high-frequency vibration can do the welding. The structure is designed and optimized by the finite element method, and a model machine is produced. According to the experimental results, the ultrasonic knife system has the virtues of high cutting force and better wedding feature, which are suitable for MEMS packaging.


2009 ◽  
Vol 294 ◽  
pp. 27-38 ◽  
Author(s):  
Fabian Ferrano ◽  
Marco Speich ◽  
Wolfgang Rimkus ◽  
Markus Merkel ◽  
Andreas Öchsner

This paper investigates the mechanical properties of a new type of hollow sphere structure. For this new type, the sphere shell is perforated by several holes in order to open up the inner sphere volume and surface. The mechanical behaviour of perforated sphere structures under large deformations and strains in a primitive cubic arrangement is numerically evaluated by using the finite element method for different hole diameters and different joining techniques.


2012 ◽  
Vol 594-597 ◽  
pp. 387-390
Author(s):  
Yu Hu ◽  
Qiang Feng

With the saturated - unsaturated seepage theory, Hualianshu landslide is seepage numerical simulated by the finite element method .The changes of Hualianshu landslide seepage are subject to the impact of rainfall and reservoir water level's changes.The formation and variation of the slope seepage field under rainfall infiltration have been come to, providing a basis for analysis of slope stability and landslide prediction.


2013 ◽  
Vol 368-370 ◽  
pp. 756-759
Author(s):  
Jing Ma ◽  
Wen Sheng Chen ◽  
Xue Feng Hu

Based on the Finite Element Method ,a model has been built to study the impact of rigid pile composite foundation with lateral unloading,then obtained a conclusion about the horizontal displacement during excavating.


Author(s):  
Jan Steininger ◽  
Stefan Medvecky ◽  
Robert Kohar ◽  
Tomas Capak

The article deals with an optimization procedure of roller elements geometry with regard to durability of spherical roller bearings. The aim of the article is to examine the impact of change of the roller elements inner geometry on durability and reliability of spherical roller bearings; the contact strain along a spherical roller by means of the Finite Element Method at contact points of components of a spherical roller bearing by means of designed 3D parametric models. The most appropriate shape of roller elements inner geometry of a bearing from the standpoint of calculated durability was determined based on results of the contact analyses.


2021 ◽  
Vol 26 (3-4) ◽  
pp. 255-264
Author(s):  
E.Y. Chugunov ◽  
◽  
A.I. Pogalov ◽  
S.P. Timoshenkov ◽  
◽  
...  

In the context of increasing the electronic components integration level, growing functionality and packaging density, as well as reducing the electronics weight and size, an integrated approach to engineering calculations of parts and assemblies of modern functionally and technically complex microelectronic products is required. Of particular importance are engineering calculations and structural modeling using computer-aided engineering systems, and also assessment of structural, technological and operational factors’ impact on the products reliability and performance. This work presents an approach to engineering calculations and microelectronic products modeling based on the finite-element method providing a comprehensive account of various factors (material properties, external loading, temperature fields, and other parameters) impact on the stress-strain state, mechanical strength, thermal condition, and other characteristics of products. On the example of parts and assemblies of products of microelectronic technology, the approximation of structures was shown and computer finite-element models were developed to study various structural and technological options of products and the effects on them. Engineering calculations and modeling of parts and assemblies were performed, taking into account the impact of material properties, design parameters and external influences on the products’ characteristics. Scientific and technical recommendations for structure optimization and design and technology solutions ensuring the products resistance to diverse effects were developed. It has been shown that an integrated approach to engineering calculations and microelectronic products modeling based on the finite-element method provides for the determination of optimal solutions taking into account structural, technological, and operational factors and allows the development of products with high tactical, technical and operational characteristics.


Sign in / Sign up

Export Citation Format

Share Document