scholarly journals Building Retrofit to Improve Energy Performance from Office to Accommodation. Case study: Tower Building, Nottingham, UK

2018 ◽  
Vol 206 ◽  
pp. 02010
Author(s):  
Nissa Aulia Ardiani ◽  
Suhendri ◽  
Mochamad Donny Koerniawan ◽  
Rachmawan Budiarto

Designed in Brutalism style by architect Andrew Renton, Tower Building has 17 floors for academic and lecturers’ office function. As the highest point in University of Nottingham, this tower has been built for almost five decades. The aim of this project is to propose the tower retrofit from current function to accommodation purpose. Improvement in terms of function and building energy performance by applying sustainable building technologies are the objectives of the retrofit. The advanced plan of building retrofit was proposed after assessing the current building performance and determined the problems. The proposed building design was based on building performance simulation result, literature, and precedent studies. Thereafter, several technologies and design ideas were applied for further investigation, to examine how is the strategies works in the building retrofit. Integrated double skin façade with BIPV, bio composite material for internal wall, double low-e glass for external wall, as well as green lung to improve natural ventilation and create public space were proposed for the building.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Kyosuke Hiyama

Applying data mining techniques on a database of BIM models could provide valuable insights in key design patterns implicitly present in these BIM models. The architectural designer would then be able to use previous data from existing building projects as default values in building performance simulation software for the early phases of building design. The author has proposed the method to minimize the magnitude of the variation in these default values in subsequent design stages. This approach maintains the accuracy of the simulation results in the initial stages of building design. In this study, a more convincing argument is presented to demonstrate the significance of the new method. The variation in the ideal default values for different building design conditions is assessed first. Next, the influence of each condition on these variations is investigated. The space depth is found to have a large impact on the ideal default value of the window to wall ratio. In addition, the presence or absence of lighting control and natural ventilation has a significant influence on the ideal default value. These effects can be used to identify the types of building conditions that should be considered to determine the ideal default values.


Author(s):  
Frank Butera ◽  
Keith Hewett

Maximising cross ventilation is a low energy method of naturally ventilating and providing heating and cooling to deep plan spaces. Significant reduction in the emission of greenhouse gases can be achieved through minimising the use of mechanical systems in regions with climatic conditions that support the use of natural ventilation. Arup has provided input into the design of a louvered facade for the control of external noise for Brisbane Domestic Airport. A full scale prototype facade was constructed and noise transmission loss measurements were undertaken. The results indicate that significant noise reduction can be achieved to enable compliance with the internal noise limits for airport terminals, whilst using natural ventilation. The findings from this research will directly benefit building designers and innovators in the pursuit of achieving sustainable building design.


2019 ◽  
Vol 111 ◽  
pp. 03062
Author(s):  
Kyosuke Hiyama ◽  
Liwei Wen

Natural ventilation is an essential component in sustainable building design. However, successfully incorporating it remains difficult because the utilizable amounts of ambient energy resources differ according to project conditions such as ambient climates. Moreover, lack of a metric that could encourage an architect to design a proper plan and façade for natural ventilation at the schematic design stage is being recognized as a barrier to successful achievement of natural ventilation. An inappropriate plan and façade would make it impossible to make thorough considerations for successful implementation of natural ventilation at the later design stages. To encourage even the architects without special expertise in natural ventilation, the metric should be as simple as possible to evaluate the achieved natural ventilation design intuitively and rationally. This paper proposes net Thermal Autonomy as a modified metric of Thermal Autonomy, which cannot easily evaluate the achievement level because the applied weather data significantly influence the calculated value. In the proposed metric, a universal threshold covering climate factors is available by applying net time, while the outdoor condition suitable for natural ventilation is used in the denominator. The practicality of the proposed metric is examined through parametric building energy simulations and analyses.


2014 ◽  
Vol 8 (4) ◽  
pp. 562-587 ◽  
Author(s):  
Maria-Angeliki Zanni ◽  
Robby Soetanto ◽  
Kirti Ruikar

Purpose – The purpose of this research is to develop a building information modelling (BIM)-enabled sustainable design process model that identifies critical decisions actions in the design process along with the information and level of detail that facilitate an informed and timely decision. Building performance analysis is usually performed after the design and construction documents are produced, resulting in lost opportunities. Design/methodology/approach – A number of research methods have been adopted; these include extensive literature review and 11 in-depth exploratory interviews with industry practitioners (sustainable building design experts, early BIM adopters). Findings – Project delivery methods have a significant effect on the sustainable outcome of buildings. The development of a structured process can assist sustainable design practice among building professionals. Learning from implemented projects, that have utilised BIM processes, facilitates the scope of creating this process and advises future projects to prevent failures. Process mapping is essential to streamline the process, support key project processes and help the design team manage their own responsibilities and deliverables required by them. Originality/value – The identification of the gap and the need for a structured process for sustainable building design for BIM execution is discussed. The synergies that exist between BIM, building performance modelling, Building Research Establishment’s Environmental Assessment Method assessment and the Royal Institute of British Architects Plan of Work are shown. The effect that project delivery has on sustainable design outcome has been established. A coordinated collaborative design process model is presented based on the findings from interviewing early adopters.


Facilities ◽  
2017 ◽  
Vol 35 (13/14) ◽  
pp. 801-817 ◽  
Author(s):  
Tristan Gerrish ◽  
Kirti Ruikar ◽  
Malcolm Cook ◽  
Mark Johnson ◽  
Mark Phillip

Purpose The aim of this paper is to demonstrate the use of historical building performance data to identify potential issues with the build quality and operation of a building, as a means of narrowing the scope of in-depth further review. Design/methodology/approach The response of a room to the difference between internal and external temperatures is used to demonstrate patterns in thermal response across monitored rooms in a single building, to clearly show where rooms are under-performing in terms of their ability to retain heat during unconditioned hours. This procedure is applied to three buildings of different types, identifying the scope and limitation of this method and indicating areas of building performance deficiency. Findings The response of a single space to changing internal and external temperatures can be used to determine whether it responds differently to other monitored buildings. Spaces where thermal bridging and changes in use from design were encountered exhibit noticeably different responses. Research limitations/implications Application of this methodology is limited to buildings where temperature monitoring is undertaken both internally for a variety of spaces, and externally, and where knowledge of the uses of monitored spaces is available. Naturally ventilated buildings would be more suitable for analysis using this method. Originality/value This paper contributes to the understanding of building energy performance from a data-driven perspective, to the knowledge on the disparity between building design intent and reality, and to the use of basic commonly recorded performance metrics for analysis of potentially detrimental building performance issues.


2018 ◽  
Vol 3 (7) ◽  
pp. 357
Author(s):  
Lobna Hassan Ali Hassan Elgheriani ◽  
Parid Wardi ◽  
AbdulBasit Ali Ali Ahmed

Natural ventilation is an effectual passive design approach to create a better indoor thermal condition as well as energy efficiency. The primary goal of building design is providing a healthy and comfortable indoor environment titled as sustainable architecture. Literature suggests that the significant feature that alteration has to take place on for better energy performance is the envelope design. This paper aims to augment the Window to Wall Ratio (WWR), orientation and courtyard corridor size for improving the design of naturally ventilated courtyard high-rise residential buildings. Briefly, the findings indicate that contending with WWR, orientation and courtyard corridor size could increase the potential of improving its natural ventilation and thus, thermal performance.


Author(s):  
Elvire Katramiz ◽  
Nesreen Ghaddar ◽  
Kamel Ghali

Abstract The mixed-mode ventilation (MMV) system is an energy-friendly ventilation technique that combines natural ventilation (NV) with mechanical air conditioning (AC). It draws in fresh air when the outdoor conditions are favorable or activates otherwise the AC system during occupancy hours. To improve performance of the MMV system, it is proposed to integrate it with an intermittent personalized ventilation (IPV) system. IPV delivers cool clean air intermittently to the occupant and enhances occupant thermal comfort. With the proper ventilation control strategy, IPV can aid MMV by increasing NV mode operational hours, and improve the energy performance of the AC system by relaxing the required macroclimate set point temperature. The aim of this work is to study the IPV+MMV system performance for an office space application in terms of thermal comfort and energy savings through the implementation of an appropriate control strategy. A validated computational fluid dynamics (CFD) model of an office space equipped with IPV is used to assess the thermal fields in the vicinity of an occupant. It is then coupled with a transient bio-heat and comfort models to find the overall thermal comfort levels. Subsequently, a building-performance simulation study is performed using Integrated Environmental Solutions-Virtual Environment (IES-VE) for an office in Beirut, Lebanon for the typical summer month of July. An energy analysis is conducted to predict the savings of the suggested design in comparison to the conventional AC system. Results showed that the use of IPV units and MMV significantly reduced the number of AC operation hours while providing thermal comfort.


2019 ◽  
Vol 41 (2) ◽  
pp. 210-224 ◽  
Author(s):  
Eleonora Brembilla ◽  
Christina J Hopfe ◽  
John Mardaljevic ◽  
Anastasia Mylona ◽  
Eirini Mantesi

A new set of CIBSE weather files for building performance simulation was recently developed to address the need for better quality solar data. These are essential for most building performance simulation applications, particularly for daylighting studies and low-energy building design, which requires detailed irradiation data for passive solar design and overheating risk analysis. The reliability of weather data becomes paramount when building performance is pushed to its limits. Findings illustrate how principles of good window design can be applied to a case study building, built to the Passivhaus standard, and how its expected performance is affected by the quality of solar irradiation data. Analyses using test reference years were most affected by changes in the solar radiation model (up to 8.3% points), whereas for design summer years the maximum difference was 1.7% points. Adopting the new model caused overheating risk to be classified as more severe using test reference years than design summer years, prompting a discussion on the design summer year selection method. Irradiance data measured on-site were used as a benchmark to evaluate the new solar radiation model, which was found to significantly improve the accuracy of irradiance data within weather files and so the reliability of overheating assessments. Practical application: CIBSE weather files are widely used for compliance verification of building performance in the UK context. This paper tests how the introduction of a new solar radiation model in weather files will affect daylighting and overheating simulation results. Examples are given on how low-energy building design considerations driven by advanced simulation techniques can help reaching indoor visual and thermal comfort requirements.


2019 ◽  
Vol 11 (24) ◽  
pp. 6965
Author(s):  
Likai Wang ◽  
Patrick Janssen ◽  
Kian Wee Chen ◽  
Ziyu Tong ◽  
Guohua Ji

For sustainable building design, performance-based optimization incorporating parametric modelling and evolutionary optimization can allow architects to leverage building massing design to improve energy performance. However, two key challenges make such applications of performance-based optimization difficult in practice. First, due to the parametric modelling approaches, the topological variability in the building massing variants is often very limited. This, in turn, limits the scope for the optimization process to discover high-performing solutions. Second, for architects, the process of creating parametric models capable of generating the necessary topological variability is complex and time-consuming, thereby significantly disrupting the design processes. To address these two challenges, this paper presents a parametric massing algorithm based on the subtractive form generation principle. The algorithm can generate diverse building massings with significant topological variability by removing different parts from a predefined volume. Additionally, the algorithm can be applied to different building massing design scenarios without additional parametric modelling being required. Hence, using the algorithm can help architects achieve an explorative performance-based optimization for building massing design while streamlining the overall design process. Two case studies of daylighting performance optimizations are presented, which demonstrate that the algorithm can enhance the exploration of the potential in building massing design for energy performance improvements.


Sign in / Sign up

Export Citation Format

Share Document