scholarly journals Experimental study in reduction of two phase flow induced vibration

2018 ◽  
Vol 211 ◽  
pp. 16001 ◽  
Author(s):  
Ismail Hossain ◽  
Vladimir I. Velkin ◽  
Sergei E. Shcheklein

Vibration in mechanical devices is one of the major problems in engineering field including power generated industry. In this study we focused on the method and possible equipment design availability in reduction of vibration level. A brief overview of the outcomings of pipeline vibrations is presented, the sources of vibrations are listed and possible solutions for eliminating vibrations are described. Devices for passive quenching of pressure pulsations in pipelines with a two-phase flow are considered. We presented the description of the experimental stand on the investigation of the influence of a two-phase flow on the vibration of sections of a pipeline under different flow patterns of a coolant, as well as the procedure for conducting an experiment to study the properties of developed and manufactured swirl models. An animated model was developed that reflects the relationship of swirl geometry with the reduction of the vibro-displacement of the pipeline as a result of passive action on a two-phase flow.

2011 ◽  
Vol 422 ◽  
pp. 486-489
Author(s):  
Qing Wu ◽  
Xiao Bei Wang ◽  
Quan Lai Li ◽  
Yan Xiang Yang

The two-phase flow field of SX type static mixer is analyzed in this paper. The comprehensive influencing factors are considered during analyzing the relationship of two-phase flowage parameters in practical device. Then the theoretical study is carried out. The two-phase flow is impinged, separated, flowed around and merged. The mixture effect is strengthened. The analytic calculation is carried out according to the practicable turbulent flow pattern and the results is useful for the structure parameters effectively selection and the characteristic optimization.


Author(s):  
Deepanjan Mitra ◽  
Vijay K. Dhir ◽  
Ivan Catton

In the past, fluid-elastic instability in two-phase flow has been largely investigated with air-water flow. In this work, new experiments are conducted in air-water cross-flow with a fully flexible 5 × 3 normal square array having pitch-to-diameter ratio of 1.4. The tubes have a diameter of 0.016 m and a length of 0.21 m. The vibrations are measured using strain gages installed on piano wires used to suspend the tubes. Experiments are carried out for void fractions from 0%–30%. A comparison of the results of the current tests with previous experiments conducted in air-water cross-flow shows that instability occurs earlier in a fully flexible array as compared to a flexible tube surrounded by rigid tubes in an array. An attempt is made to separate out the effects of structural parameters of three different experimental datasets by replotting the instability criterion by incorporating the instability constant K, in the reduced velocity parameter.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Shuichiro Miwa ◽  
Takashi Hibiki ◽  
Michitsugu Mori

Fluctuating force induced by horizontal gas–liquid two-phase flow on 90 deg pipe bend at atmospheric pressure condition is considered. Analysis was conducted to develop a model which is capable of predicting the peak force fluctuation frequency and magnitudes, particularly at the stratified wavy two-phase flow regime. The proposed model was developed from the local instantaneous two-fluid model, and adopting guided acoustic theory and dynamic properties of one-dimensional (1D) waves to consider the collisional force due to the interaction between dynamic waves and structure. Comparing the developed model with experimental database, it was found that the main contribution of the force fluctuation due to stratified wavy flow is from the momentum and pressure fluctuations, and collisional effects. The collisional effect is due to the fluid–solid interaction of dynamic wave, which is named as the wave collision force. Newly developed model is capable of predicting the force fluctuations and dominant frequency range with satisfactory accuracy for the flow induced vibration (FIV) caused by stratified wavy two-phase flow in 52.5 mm inner diameter (ID) pipe bend.


Author(s):  
In-Cheol Chu ◽  
Heung June Chung ◽  
Chang Hee Lee ◽  
Hyung Hyun Byun ◽  
Moo Yong Kim

In the present study, a series of experiments have been performed to investigate a fluid-elastic instability of a nuclear steam generator U-tube bundle in an air-water two-phase flow condition. A total of 39 U-tubes are arranged in a rotated square array with a pitch-to-diameter ratio of 1.633. The diameter and other geometrical parameters of U-bend region are the same to those of an actual steam generator, but the vertical length of U-tubes are reduced to 2-span in contrast to 9-span of an actual steam generator. The following parameters were experimentally measured to evaluate a fluid-elastic instability of U-tube bundles in a two-phase flow: a general tube vibration response, a critical gap velocity, a damping ratio and a hydrodynamic mass. Based on the experimental measurements, the instability factor, K, of Connors’ relation was preliminary assessed with some assumptions on the velocity and density profiles of the two-phase flow.


Author(s):  
W. G. Sim

Two-phase cross flow exists in many shell- and tube heat exchangers such as condensers, evaporators and nuclear steam generators. During the last two decades, research devoted to two-phase flow induced vibrations has increased, mainly driven by the nuclear industry. Flow-induced vibration excitation forces can cause excessive vibration which will result in long-term fretting-wear or fatigue. To avoid potential tube failures in heat exchangers, it is required for designer to have guidelines that incorporate flow-induced vibration excitation forces. The phenomenon of the vibration of tubes in two-phase flow is very complex and depends on factors which are nonexistent in single-phase flows. To understand the fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Pressure distributions generated by two-phase flow over tube surfaces yield more general information than the local velocity distribution. The pressure coefficient distribution obtained by experimental test has been evaluated.


Author(s):  
Olufemi E. Bamidele ◽  
Wael H. Ahmed ◽  
Marwan Hassan

Abstract The current work investigates two-phase flow induced vibrations in 90° U-bend. The two-phase induced vibration of the structure was investigated in the vertical, horizontal and axial directions for various flow patterns from bubbly flow to wavy and annular-dispersed flow. The void fractions at various locations along the piping including the fully developed void fraction and the void fraction at the entrance of the U-bend were fully investigated and correlated with the vibration amplitude. The results show that the excitation forces of the two-phase flow in a piping structure are highly dependent on the flow pattern and the flow conditions upstream of the bend. The fully developed void fraction and slip between phases are important in modelling of forces in U-bends and elbows.


2011 ◽  
Vol 241 (5) ◽  
pp. 1508-1515 ◽  
Author(s):  
In-Cheol Chu ◽  
Heung June Chung ◽  
Seungtae Lee

2004 ◽  
Vol 126 (4) ◽  
pp. 523-533 ◽  
Author(s):  
M. J. Pettigrew ◽  
C. E. Taylor

Two-phase flow exists in many shell-and-tube heat exchangers such as condensers, evaporators, and nuclear steam generators. Some knowledge on tube damping mechanisms is required to avoid flow-induced vibration problems. This paper outlines the development of a semi-empirical model to formulate damping of heat exchanger tube bundles in two-phase cross flow. The formulation is based on information available in the literature and on the results of recently completed experiments. The compilation of a database and the formulation of a design guideline are outlined in this paper. The effects of several parameters such as flow velocity, void fraction, confinement, flow regime and fluid properties are discussed. These parameters are taken into consideration in the formulation of a practical design guideline.


Sign in / Sign up

Export Citation Format

Share Document