scholarly journals Human Ergonomics Study in Microgravity Environment

2018 ◽  
Vol 221 ◽  
pp. 04010
Author(s):  
Pengyan Liu ◽  
Dong Zhou ◽  
Long Xue ◽  
Yuan Li

In recent decades, human exploration of space has gradually deepened, and more and more countries and regions have successfully sent astronauts into space. How to complete the space experiment as efficiently and safely as possible in the shortest time with limited resources has become an important issue in the field of aerospace technology. Taking full account of such matter, we consider that ergonomics in design stage is one of the most effective ways to solve this problem. The microgravity environment is the biggest difference between ground and space. Therefore, the study of ergonomics under the microgravity environment is of great significance. This article deeply analyses and summarizes the physiological differences between human and normal gravity under microgravity environment. From the ergonomics point of view, the requirements for spacecraft design and space mission planning are put forward for the reference of engineers and scholars.

2020 ◽  
Vol 1 (4) ◽  
pp. 5-10
Author(s):  
V. Barysheva ◽  
O. Druzhinina

The article is devoted to the analysis of the system object from the point of view of design from design, sociocultural and philosophical positions. The authors systematize the definitions of a system object of design proposed in the 1960–1980s by theorists and practitioners, art historians, cultural experts and philosophers from different countries, including Russia, which allows a comprehensive understanding of the phenomenon of design culture. This article is devoted to the characteristic properties of the system object in design. They were considered and analyzed on the example of the «Absheron» design-program when designing of agricultural village). This concept was developed at the All-Union Scientific Research Institute of Technical Aesthetics (VNIITE) in 1983. Using the same example, the features of the approach to designing a system object in design was observed not only as a separate product, but as a sociocultural situation that constantly changes at each design stage.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1050
Author(s):  
Federico Zanelli ◽  
Francesco Castelli-Dezza ◽  
Davide Tarsitano ◽  
Marco Mauri ◽  
Maria Laura Bacci ◽  
...  

Smart monitoring systems are currently gaining more attention and are being employed in several technological areas. These devices are particularly appreciated in the structural field, where the collected data are used with purposes of real time alarm generation and remaining fatigue life estimation. Furthermore, monitoring systems allow one to take advantage of predictive maintenance logics that are nowadays essential tools for mechanical and civil structures. In this context, a smart wireless node has been designed and developed. The sensor node main tasks are to carry out accelerometric measurements, to process data on-board, and to send wirelessly synthetic information. A deep analysis of the design stage is carried out, both in terms of hardware and software development. A key role is played by energy harvesting integrated in the device, which represents a peculiar feature and it is thanks to this solution and to the adoption of low power components that the node is essentially autonomous from an energy point of view. Some prototypes have been assembled and tested in a laboratory in order to check the design features. Finally, a field test on a real structure under extreme weather conditions has been performed in order to assess the accuracy and reliability of the sensors.


Algorithms ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 231
Author(s):  
Xiangyu Long ◽  
Shufan Wu ◽  
Xiaofeng Wu ◽  
Yixin Huang ◽  
Zhongcheng Mu

This paper presents a space mission planning tool, which was developed for LEO (Low Earth Orbit) observation satellites. The tool is focused on a two-phase planning strategy with clustering preprocessing and mission planning, where an improved clustering algorithm is applied, and a hybrid algorithm that combines the genetic algorithm with the simulated annealing algorithm (GA–SA) is given and discussed. Experimental simulation studies demonstrate that the GA–SA algorithm with the improved clique partition algorithm based on the graph theory model exhibits higher fitness value and better optimization performance and reliability than the GA or SA algorithms alone.


2014 ◽  
Vol 5 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Julian Jakubowski ◽  
Jozef Peterka

Abstract Design for manufacturing (DFM) strategies help companies to develop new products that are feasible to manufacture. In the early stages of design all engineering activities are initiated in computer aided systems. When the design is finished, the process of manufacturing and production planning begins. Issues often occur at this point because two teams, designers and manufacturers, have been working separately. The resulting question is: ‘how can Knowledge Engineering (KE) be used effectively to enhance manufacturability during early design?’ Even if the most complex geometrical product can be realized using today’s technologies such as rapid prototyping it is only true in unit production. In lot and mass production where CNC machines are used, complex geometry causes a number of difficulties. So it is important to investigate the project carefully in the early design stage from the point of view of whether it will be possible to manufacture.


Author(s):  
Tatsuya Hazuku ◽  
Tomoji Takamasa ◽  
Takashi Hibiki ◽  
Mamoru Ishii

Axial developments of one-dimensional void fraction, bubble number density, interfacial area concentration, and Sauter mean diameter of adiabatic nitrogen-water bubbly flows in a 9-mm-diameter pipe were measured under a microgravity environment using an image-processing method. The interfacial area transport mechanism was determined based on visual observation. Marked bubble coalescence occurred when fast-moving bubbles near the channel center overtook and swept up slower-moving bubbles in the vicinity of the channel wall (velocity profile entrainment). Negligible bubble breakup was observed because of weak turbulence under tested flow conditions. Axial changes of measured interfacial area concentrations were compared with the interfacial area transport equation considering the bubble expansion and wake entrainment as observed under a normal gravity environment. The velocity profile entrainment effect under microgravity was likely to be comparable to the wake entrainment effect under normal gravity in the tested flow conditions. This apparently led to insignificant differences between measured interfacial area concentrations and those predicted by the interfacial area transport equation with the wake entrainment model under normal gravity. Possible bubble coalescence mechanisms would differ, however, between normal gravity and microgravity conditions.


2015 ◽  
Vol 10 (6) ◽  
pp. 1025-1030 ◽  
Author(s):  
Masaki Shirakawa ◽  
◽  
Fumiaki Tanigaki ◽  
Takashi Yamazaki ◽  

The International Space Station (ISS) is a completely closed environment that offers a long-term microgravity environment. It is a unique environment where microbes can fly and attach themselves to devices or humans, especially the exposed parts of the body and head. The ongoing monitoring and analysis of microbes and their movement inside the Japanese Experiment Module (named “Kibo”) of the ISS are intended to study the effects of microbes on humans and prevent health hazards caused by microbes during a long-term space mission. This paper describes the current status and future plan of Japanese microbiological experiments to monitor microbial dynamics in Kibo. It also describes the future prospective and prioritized microbiological research areas based on the “Kibo utilization scenario towards 2020 in the field of life science.” Given the microbial research in space being actively conducted by the USA, NASA and international activities are also reported.


Sign in / Sign up

Export Citation Format

Share Document