scholarly journals Synthesis of non-edible biodiesel from crude jatropha oil and used cooking oil

2018 ◽  
Vol 225 ◽  
pp. 06008
Author(s):  
Syazwana Sapee ◽  
Ahmad Fitri Yusop ◽  
Mohammad Nazri Mohd Jaafar ◽  
Rizalman Mamat ◽  
Wan Asma Ibrahim ◽  
...  

This study focuses on a feasibility study of alternative nonedible crude oil such as jatropha and used cooking oil in biodiesel production. Crude jatropha oil (CJO) and used cooking oil (UCO) were converted to biodiesel using a two-step transesterification process with presents of acid-based and alkaline-based catalysts. Each three biodiesel blends (B5, B15 and B25) have been produced by blended with conventional diesel fuel (CDF). Determination of the fuel properties for each blend including CDF, Jatropha Methyl Ester (JME) and Used Cooking Oil Methyl Ester (UCOME) have been carried out. The average yield for jatropha and used cooking oil biodiesels production was 94.3% and 92% respectively. The increment of the percentage of JME or UCOME in its blends is proportional to fuels physical properties such as density, specific gravity, kinematic viscosity and surface tension, however inversely proportional to fuels calorific value. Based on the results of this study, it is acceptable to conclude that non-edible CJO and UCO are viable alternatives to edible oil as feedstock to renewable fuel in order to reduce the greenhouse gases produced.

Author(s):  
Veerbhadrappa a, b, Telgane ◽  
Sharanappa Godiganur ◽  
N. Keerthi kumar ◽  
T.K. Chandrashekar

In the present experimental investigation, the performance and emission characteristics of four stroke single cylinder water-cooled DI diesel engine using dual hybrid biodiesel is evaluated. Dual hybrid biodiesel produced from Simarouba Oil Methyl Ester (SuOME) and Jatropha Oil Methyl Ester (JOME) is used as a fuel to run the engine. Both the methyl esters are mixed in equal % and blended with diesel (B20 to B100). The fuel properties such as kinematic viscosity, calorific value, flash point, carbon residue and specific gravity were found for the prepared biodiesel. The results showed that B20 has almost closer brake thermal efficiency compared to that of the conventional diesel fuel. Except NOx, B100 has recorded very less emission of CO, CO2 and HC compared to that of diesel fuel.


2021 ◽  
Vol 170 ◽  
pp. 302-314
Author(s):  
Adeyinka S. Yusuff ◽  
Aman K. Bhonsle ◽  
Jayati Trivedi ◽  
Dinesh P. Bangwal ◽  
Lok P. Singh ◽  
...  

2013 ◽  
Vol 59 (No. 4) ◽  
pp. 121-127
Author(s):  
P. Trávníček ◽  
M. Valach ◽  
Z. Hlaváčová ◽  
J. Mareček ◽  
T. Vítěz ◽  
...  

The goal of this study was the determination of basic physical properties such as density, calorific value and rheological properties of liquid biofuels. Biofuels on the base of bioethanol and rapeseed methyl ester were chosen. Following control samples were selected: diesel oil without admixture of methyl esters and commercially available diesel oils with small amount of methyl ester admixture (6.2 and 6.5%). Dynamic viscosities of individual samples were measured in the range from –10°C to 50°C. Then dependence of shear rate on shear stress was measured at temperatures –10, 0, 20 and 40°C. The most of samples showed the Newtonian behaviour. However, samples with high content of methyl esters or pure methyl esters showed thixotropy behaviour at the low temperature.


Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 690 ◽  
Author(s):  
Edgar M. Sánchez Faba ◽  
Gabriel O. Ferrero ◽  
Joana M. Dias ◽  
Griselda A. Eimer

Recent research focuses on new biodiesel production and purification technologies that seek a carbon-neutral footprint, as well as cheap, renewable and abundant raw materials that do not compete with the demand for food. Then, many attractive alternatives arise due to their availability or low-cost, such as used cooking oil, Jatropha oil (non-edible) or byproducts of vegetable oil refineries. Due to their composition and the presence of moisture, these oils may need a pretreatment to reach the established conditions to be used in the biodiesel production process so that the final product complies with the international quality standards. In this work, a solid catalyst based on 10 wt % sodium oxide supported on mesoporous silica SBA-15, was employed in the transesterification of different feedstocks (commercial sunflower and soybean oil, used cooking oil, acid oil from soapstock and Jatropha hieronymi oil) with absolute methanol in the following reaction conditions—2–8 wt % catalyst, 14:1 methanol to oil molar ratio, 60 °C, vigorous magnetic stirring and 5 h of reaction. In this way, first- and second-generation biodiesel was obtained through heterogeneous catalysis with methyl ester yields between 52 and 97 wt %, depending on the free fatty acid content and the moisture content of the oils.


2010 ◽  
Vol 14 (4) ◽  
pp. 339-345 ◽  
Author(s):  
M.C. Math ◽  
Sudheer Prem Kumar ◽  
Soma V. Chetty

2021 ◽  
Author(s):  
Muhammed Niyas Maliyekkal ◽  
Andavan Shaija

Abstract It is well known that biodiesel from pure coconut oil is suited best for diesel engine operation. However, the commercialization of coconut oil biodiesel is unfeasible due to its higher cost and demand as a food material. In this study, biodiesels were produced from coconut testa oil and coconut waste cooking oil, two waste feedstock derivatives of coconut. Fatty acid composition and properties such as density, calorific value, kinematic viscosity, cloud and pour points, flash and fire points, Conradson carbon residue, and copper strip corrosion of these two biodiesels were determined and compared with those of fresh coconut oil biodiesel and the standard diesel. It was found that the properties and fatty acid profiles of all three biodiesels were similar. Furthermore, from the engine testing using B20 (diesel-biodiesel blend with 20% biodiesel) blends of prepared biodiesels, it was found that the engine performance, emission, and combustion characteristics were comparable for coconut testa oil and coconut waste cooking oil biodiesels with fresh coconut oil biodiesel. Thus the coconut testa oil and coconut waste cooking oil can be used as low-cost feedstocks for biodiesel production with all advantages of fresh coconut oil.


Sign in / Sign up

Export Citation Format

Share Document