scholarly journals Technogenic magnetic particles of topsoil from different sources of emission - A case study from upper silesian conurbation, Poland

2018 ◽  
Vol 247 ◽  
pp. 00051
Author(s):  
Maria Magdalena Szuszkiewicz ◽  
Adam Łukasik ◽  
Tadeusz Magiera ◽  
Marcin Szuszkiewicz

Studies on the effects of dust deposition on soils in urban-industrial areas were conducted with application of magnetic (soil magnetometry, thermomagnetic analysis) and geochemical (elements content) methods. The study area covers three different forest sites on Upper Silesian Conurbation. The purpose of the research was an estimation of soil pollution and characteristic of air derived particles. Results show magnetite and maghemite as dominant magnetic components of analyzed soil samples. The highest volume magnetic susceptibility (κ) and no correlation with potentially toxic elements (PTEs) were stated close to metallurgical plant whilst the highest correlation coefficient between κ and PTEs was stated in samples from the urban area and in a vicinity of coking plant.

Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1066
Author(s):  
Małgorzata Wawer

Solid fossil fuel power plants are the main source of energy in Poland. In 2018, the most important energy carrier was hard coal with a share of 57.9%, followed by lignite with a share of 18.1%. In addition to CO2, NOx and SOx, the combustion of fossil fuels produces dusts containing, among others, potentially toxic elements (PTEs), e.g., Pb, Zn, Cu, Cr, Cd. Although the currently operating power plants have efficient filter systems, the total dust emission in Poland in 2017 amounted to 341,000 t, of which approximately 36,000 t was from the power plants. PTEs present in the power plant dust are often accompanied by technogenic magnetic particles (TMPs)—mainly iron oxides and hydroxides formed in high-temperature technological processes as a result of the transformations of iron minerals contained in raw materials and additives. The presence of magnetic iron minerals (e.g., magnetite, hematite, maghemite, metallic iron) in the tested ashes from hard coal and lignite power plants was confirmed by scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) analysis. The sequential extraction analysis showed that most of the analyzed PTEs found in dust after hard coal combustion were mainly related to amorphous and crystalline FeOx or in the residual fraction and in dust after lignite combustion, mainly in the most mobile fractions.


2020 ◽  
Vol 6 (1) ◽  
pp. 18-39
Author(s):  
Areena Zaini ◽  
Haryantie Kamil ◽  
Mohd Yazid Abu

The Electrical & Electronic (E&E) company is one of Malaysia’s leading industries that has 24.5% in manufacturing sector production. With a continuous innovation of E&E company, the current costing being used is hardly to access the complete activities with variations required for each workstation to measure the un-used capacity in term of resources and cost. The objective of this work is to develop a new costing structure using time-driven activity-based costing (TDABC) at . This data collection was obtained at E&E company located at Kuantan, Pahang that focusing on magnetic component. The historical data was considered in 2018. TDABC is used to measure the un-used capacity by constructing the time equation and capacity cost rate. This work found three conditions of un-used capacity. Type I is pessimistic situation whereby according to winding toroid core, the un-used capacity of time and cost are -14820 hours and -MYR2.60 respectively. It means the system must sacrifice the time and cost more than actual apportionment. Type II is most likely situation whereby according to assembly process, the un-used capacity of time and cost are 7400 hours and MYR201575.45 respectively. It means the system minimize the time and cost which close to fully utilize from the actual apportionment. Type III is optimistic situation whereby according to alignment process, the un-used capacity of time and cost are 4120 hours and MYR289217.15 respectively. It means the system used small amount of cost and time from the actual apportionment.


Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 150
Author(s):  
Nilgün Güdük ◽  
Miguel de la Varga ◽  
Janne Kaukolinna ◽  
Florian Wellmann

Structural geological models are widely used to represent relevant geological interfaces and property distributions in the subsurface. Considering the inherent uncertainty of these models, the non-uniqueness of geophysical inverse problems, and the growing availability of data, there is a need for methods that integrate different types of data consistently and consider the uncertainties quantitatively. Probabilistic inference provides a suitable tool for this purpose. Using a Bayesian framework, geological modeling can be considered as an integral part of the inversion and thereby naturally constrain geophysical inversion procedures. This integration prevents geologically unrealistic results and provides the opportunity to include geological and geophysical information in the inversion. This information can be from different sources and is added to the framework through likelihood functions. We applied this methodology to the structurally complex Kevitsa deposit in Finland. We started with an interpretation-based 3D geological model and defined the uncertainties in our geological model through probability density functions. Airborne magnetic data and geological interpretations of borehole data were used to define geophysical and geological likelihoods, respectively. The geophysical data were linked to the uncertain structural parameters through the rock properties. The result of the inverse problem was an ensemble of realized models. These structural models and their uncertainties are visualized using information entropy, which allows for quantitative analysis. Our results show that with our methodology, we can use well-defined likelihood functions to add meaningful information to our initial model without requiring a computationally-heavy full grid inversion, discrepancies between model and data are spotted more easily, and the complementary strength of different types of data can be integrated into one framework.


2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Diego Carvalho do Nascimento ◽  
Pedro Luiz Ramos ◽  
André Ennes ◽  
Camila Cocolo ◽  
Márcio José Nicola ◽  
...  

Abstract: The present study aimed to analyze factors associated with the equipment failures of the sugarcane harvester, whose machineries has high importance in the harvest process and cost involved. Part of the data was originally provided by a company located in the countryside of Sao Paulo State, from two machines, collected from January 2015 to August 2017, corresponding to 2.5 crops. The overall dataset was obtained from three different sources: a stop-tracking system, which provides the track of a preventive and corrective maintenance historical of the analyzed equipment; telemetry data of the equipment, captured through embedded computer systems, installed in the machine’ type under study, which provide information on its operation; and meteorological data from the Brazilian National Institute of Meteorology. Multivariate analyzes were used such as principal components and multiple regression models, therefore creating a model for prediction considering the next equipment’ break, then pointing to causes of process failures. Thus, the results point to some improvements concerned with individualized reliability scheme in order to reduce the number of corrective stops given the equipment.


2017 ◽  
Vol 47 (2) ◽  
pp. 963
Author(s):  
E. Kokinou ◽  
C. Belonaki ◽  
D. Sakadakis ◽  
K. Sakadaki

Main scope of the present study is to combine topographic and geological data, magnetic susceptibility and thermomagnetic analysis in order to investigate the magnetic properties of the near surface soils in possible polluted urban areas. For this purpose, a power plant with a dense traffic net around it, located in the NW section of Heraklion city in Crete was selected to be the study area. Surface soil samples have been collected from the area under investigation and they were analyzed in order to estimate the spatial distribution of the magnetic susceptibility. Loci of high values of the magnetic susceptibility within the study area gave rise to further proceed to thermomagnetic analysis of the selected samples. GIS techniques were used for mapping the magnetic measurements on the various topographic and geological features of the area. The digital elevation model was created by the digitization of the topographic map contours (1:5000 scale maps). The combination of the above techniques indicate high values of the magnetic susceptibility especially in the northeastern part of the investigated area, possibly related to pollution due to the presence of heavy metals.


Sign in / Sign up

Export Citation Format

Share Document