scholarly journals Cup lump modified asphalt mixture along jalan Kuala Lumpur-Kuantan, daerah Temerloh, Pahang

2018 ◽  
Vol 250 ◽  
pp. 02007 ◽  
Author(s):  
Zainal Othman ◽  
Mohd Rosli Hainin ◽  
Muhammad Naqiuddin Mohd Warid ◽  
Mohd Khairul Idham ◽  
Siti Nur Naqibah Kamarudin

Issue of rubber additive in asphalt mixture has been discussed in asphalt industry Malaysia and its usage was suggested to be used in Pan Borneo Highway project. Using rubber additives can increase revenue rubber tappers in Malaysia. Hence, a study was conducted by the Public Works Department (PWD) and Malaysian Rubber Board (MRB) to investigate the properties of Cup Lumps Modified Asphalt (CMA) based on PWD specifications and its performance. The study area selected was at FT02, Jalan Kuala Lumpur - Kuantan, Temerloh Pahang. In this study, 5 % Cup Lump Modified Binder (CMB) were used. Tests involved were Penetration Softening Point, Flash Point, Dynamic Shear, Marshall, Road Scanner (RS), Falling Weight Deflectometer (FWD), Skid Resistance (Pendulum Test) and Dynamic Creep. The results indicate that CMB with bitumen 60/70 meet the specification. However, it will tend to rut when the temperature exceeds 70°C. For CMA mixture, it shows similar performance with conventional mixture. Meanwhile, at site, the performance for CMA pavement was better in surface condition (94 % good condition in roughness), structural condition (100 % good condition), skid resistance (SRV 63) and dynamic creep (32.01 MPa) compared to conventional pavement AC14. Thus, it can be suggested that the performance of CMA is better than conventional mixture AC14.

2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Norfazira Mohd Azahar ◽  
Norhidayah Abdul Hassan ◽  
Ramadhansyah Putra Jaya ◽  
Hasanan Md. Nor ◽  
Mohd Khairul Idham Mohd Satar ◽  
...  

The use of cup lump rubber as an additive in asphalt binder has recently become the main interest of the paving industry. The innovation helps to increase the natural rubber consumption and stabilize the rubber price. This study evaluates the mechanical performance of cup lump rubber modified asphalt (CMA) mixture in terms of resilient modulus, dynamic creep and indirect tensile strength under aging conditions. The CMA mixture was prepared using dense-graded Marshall-designed mix and the observed behavior was compared with that of conventional mixture. From the results, both mixtures passed the volumetric properties as accordance to Malaysian Public Work Department (PWD) specification. The addition of cup lump rubber provides better resistance against permanent deformation through the enhanced properties of resilient modulus and dynamic creep. Furthermore, the resilient modulus of CMA mixture performed better under aging conditions.  


2016 ◽  
Vol 10 (1) ◽  
pp. 511-523 ◽  
Author(s):  
Li Limin ◽  
He Zhaoyi ◽  
Liu Weidong ◽  
Hu Cheng ◽  
Liu Yang

To solve the problem of rutting and fatigue damage to asphalt pavement, rutting and fatigue performances of Qingchuan rock asphalt modified asphalt were studied, based on the dynamic shear rheometer test, the dynamic creep test, the rutting test, the indirect tensile fatigue test, the small-sized acceleration loading test, the compressive resilient modulus test, the BISAR3.0 Program and the rutting calculation method based on dynamic finite element method. The results indicate that Qingchuan rock asphalt modifier can obviously improve the anti-fatigue performance and anti-rutting performance of asphalt pavement. Taking the anti-rutting performance and the raw-material price of asphalt into consideration, a rock asphalt optimum content ranging from 5% to 8% is suggested. Qingchuan rock asphalt is a good modifier to solve the rutting and the fatigue damage of asphalt pavement.


2018 ◽  
Vol 8 (12) ◽  
pp. 2581 ◽  
Author(s):  
Yafeng Gong ◽  
Haipeng Bi ◽  
Zhenhong Tian ◽  
Guojin Tan

The objective of this research is to evaluate the pavement performance degradation of nano-TiO2/CaCO3 and basalt fiber composite modified asphalt mixtures under freeze‒thaw cycles. The freeze‒thaw resistance of composite modified asphalt mixture was studied by measuring the mesoscopic void volume, stability, indirect tensile stiffness modulus, splitting strength, uniaxial compression static, and dynamic creep rate. The equal-pitch gray prediction model GM (1, 3) was also established to predict the pavement performance of the asphalt mixture. It was concluded that the high- and low-temperature performance and water stability of nano-TiO2/CaCO3 and basalt fiber composite modified asphalt mixture were better than those of an ordinary asphalt mixture before and after freeze‒thaw cycles. The test results of uniaxial compressive static and dynamic creep after freeze‒thaw cycles showed that the high-temperature stability of the nano-TiO2/CaCO3 and basalt fiber composite modified asphalt mixture after freeze‒thaw was obviously improved compared with an ordinary asphalt mixture.


2016 ◽  
Vol 16 ◽  
pp. 69-81 ◽  
Author(s):  
Muhammad Karami ◽  
Ainalem Nega ◽  
Ahdyeh Mosadegh ◽  
Hamid Nikraz

The main objective this study is to evaluate the permanent deformation of buton rock asphalt (BRA) modified asphalt paving mixtures using dynamic creep test so that long term deformation behavior of asphalt mixtures can be characterized. The dynamic creep test was conducted on unmodified and BRA modified asphalt mixture using UTM25 machine. Asphalt cement of C170 from a regional supplier in Western Australia was used as the base asphalt binder for unmodified asphalt mixture; and BRA modified asphalt mixtures were made by substituting the base asphalt with 10, 20, and 30% (by weight of total asphalt binder) natural binder continuing granular BRA modified binder. The granular (pellets) BRA modified binder with a diameter of 7-10 mm was produced and extracted according the Australia Standard. Crushed granite was taken from a local quarry of the region; and dense graded for both unmodified and BRA modified asphalt mixture with the nominal size of 10 mm was used. The results of this analysis showed that BRA modified had a good performance as compared with unmodified asphalt mixtures, and increase in the content modified binder to 10%, 20%, and 30% resulted in decrease of the total permanent strain.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Mahmoud Ameri ◽  
Mostafa Vamegh ◽  
Hamed Rooholamini ◽  
Farshad Haddadi

Rutting is one of the most common distresses in flexible pavements and can affect vehicle controlling features. Although asphalt binder constitutes a small percentage of the asphalt mixture, its properties play a crucial role in pavement performance and its rutting resistance. One way of improving binder properties and rutting resistance is to use additives. In this research, nanoclay and SBR polymer have been simultaneously used to modify 60–70 penetration binder to study rutting resistance of binder and asphalt mixture. To this end, the storage stability, rotational viscosity, DSR, and RCR tests on binder and marshal stability were performed, and dynamic creep and wheel track tests on asphalt mix were performed to assess rutting performance. The test and statistical analysis results indicated that nanoclay has considerably positive impact on rutting and elastic deformation of neat and SBR-modified asphalt binder and mixture.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hongfu Liu ◽  
Teng Guo ◽  
Chenxi Yang ◽  
Yunyong Huang ◽  
Xuelian Li

Ultrathin wearing course (UTWC) has been widely applied in both asphalt pavements preventive maintenance and functional overlay. This study’s objective is to evaluate the influence of different modified asphalt binders with warm mix additives on the skid resistance of UTWC and to reveal the attenuation law of skid resistance of UTWC. Three types of modified asphalt binders (Styrene-Butadiene-Styrene- (SBS-) modified asphalt, Acrylester Rubber- (AR-) modified asphalt, and SinoTPS-modified asphalt) and sasobit warm mix asphalt additive were selected to prepare asphalt mixtures. The Model Mobile Load Simulator 3 (MMLS3) was used to simulate repeated vehicle loading and abrasion. The British Pendulum Number (BPN) and Mean Texture Depth (MTD) were chosen to evaluate the skid resistance of the UTWC. The Analysis of Range (ANOR) and Analysis of Variance (ANOVA) were used to verify the significance of asphalt binder on the antiskid performance of the UTWC. ANOR and ANOVA show that the influence of different modified asphalt binders on the skid resistance of the UTWC is significant. The SinoTPS modified asphalt mixture can maintain high texture roughness before and after abrasion, providing excellent and durable skid resistance. The influence of the addition of a warm mixing additive on the skid resistance of UTWC is not significant, and changes in microtexture mainly reflect its impact on antiskid performance. The decay curve of three modified asphalt binders of the skid resistance of the UTWC can be well fitted into an exponential function. The conclusion will play an essential role in selecting the asphalt binder in a UTWC to improve the antiskid performance.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2328 ◽  
Author(s):  
Wei Guo ◽  
Xuedong Guo ◽  
Mengyuan Chang ◽  
Wenting Dai

Viscoelasticity property of bitumen is closely related to the service life of bituminous pavement. This paper evaluated the impact of one of the most efficient and widely used nanomaterials in various industries called hydrophobic nanosilica on the viscoelasticity property of bitumen and asphalt mixture. In this paper, three hydrophobic nanosilica modified bitumens and asphalt mixtures were researched by conventional physical properties test, SEM test, FTIR test, DSC test, DSR test, static creep test and dynamic creep test. The results showed that the introduction of hydrophobic nanosilica could strengthen the viscosity of asphalt more effectively and had better dispersion than hydrophilic nanosilica in asphalt. From conventional physical properties test and rheological performance test, hydrophobic nanosilica could weaken the temperature susceptibility of bitumen observably. From DSR test, hydrophobic nanosilica modified asphalt had a lower sensitivity and dependence on temperature and frequency than hydrophilic nanosilica modified asphalt. The Cole–Cole diagrams indicated that hydrophobic nanosilica exhibited good compatibility with asphalt compared with hydrophilic nanosilica. Newly formed chemical bonds were found in the hydrophobic nanosilica modified asphalt and its mixture with stone according to SEM test, FTIR test, and DSC test, which is the biggest difference from the modification mechanism of hydrophilic nanosilica modified asphalt. Through static and dynamic creep test, it found that the addition of hydrophobic nanosilica can significantly reduce the creep strain at the same temperature.


Sign in / Sign up

Export Citation Format

Share Document