scholarly journals Evaluating the Effect of Hydrophobic Nanosilica on the Viscoelasticity Property of Asphalt and Asphalt Mixture

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2328 ◽  
Author(s):  
Wei Guo ◽  
Xuedong Guo ◽  
Mengyuan Chang ◽  
Wenting Dai

Viscoelasticity property of bitumen is closely related to the service life of bituminous pavement. This paper evaluated the impact of one of the most efficient and widely used nanomaterials in various industries called hydrophobic nanosilica on the viscoelasticity property of bitumen and asphalt mixture. In this paper, three hydrophobic nanosilica modified bitumens and asphalt mixtures were researched by conventional physical properties test, SEM test, FTIR test, DSC test, DSR test, static creep test and dynamic creep test. The results showed that the introduction of hydrophobic nanosilica could strengthen the viscosity of asphalt more effectively and had better dispersion than hydrophilic nanosilica in asphalt. From conventional physical properties test and rheological performance test, hydrophobic nanosilica could weaken the temperature susceptibility of bitumen observably. From DSR test, hydrophobic nanosilica modified asphalt had a lower sensitivity and dependence on temperature and frequency than hydrophilic nanosilica modified asphalt. The Cole–Cole diagrams indicated that hydrophobic nanosilica exhibited good compatibility with asphalt compared with hydrophilic nanosilica. Newly formed chemical bonds were found in the hydrophobic nanosilica modified asphalt and its mixture with stone according to SEM test, FTIR test, and DSC test, which is the biggest difference from the modification mechanism of hydrophilic nanosilica modified asphalt. Through static and dynamic creep test, it found that the addition of hydrophobic nanosilica can significantly reduce the creep strain at the same temperature.

2016 ◽  
Vol 16 ◽  
pp. 69-81 ◽  
Author(s):  
Muhammad Karami ◽  
Ainalem Nega ◽  
Ahdyeh Mosadegh ◽  
Hamid Nikraz

The main objective this study is to evaluate the permanent deformation of buton rock asphalt (BRA) modified asphalt paving mixtures using dynamic creep test so that long term deformation behavior of asphalt mixtures can be characterized. The dynamic creep test was conducted on unmodified and BRA modified asphalt mixture using UTM25 machine. Asphalt cement of C170 from a regional supplier in Western Australia was used as the base asphalt binder for unmodified asphalt mixture; and BRA modified asphalt mixtures were made by substituting the base asphalt with 10, 20, and 30% (by weight of total asphalt binder) natural binder continuing granular BRA modified binder. The granular (pellets) BRA modified binder with a diameter of 7-10 mm was produced and extracted according the Australia Standard. Crushed granite was taken from a local quarry of the region; and dense graded for both unmodified and BRA modified asphalt mixture with the nominal size of 10 mm was used. The results of this analysis showed that BRA modified had a good performance as compared with unmodified asphalt mixtures, and increase in the content modified binder to 10%, 20%, and 30% resulted in decrease of the total permanent strain.


2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Norfazira Mohd Azahar ◽  
Norhidayah Abdul Hassan ◽  
Ramadhansyah Putra Jaya ◽  
Hasanan Md. Nor ◽  
Mohd Khairul Idham Mohd Satar ◽  
...  

The use of cup lump rubber as an additive in asphalt binder has recently become the main interest of the paving industry. The innovation helps to increase the natural rubber consumption and stabilize the rubber price. This study evaluates the mechanical performance of cup lump rubber modified asphalt (CMA) mixture in terms of resilient modulus, dynamic creep and indirect tensile strength under aging conditions. The CMA mixture was prepared using dense-graded Marshall-designed mix and the observed behavior was compared with that of conventional mixture. From the results, both mixtures passed the volumetric properties as accordance to Malaysian Public Work Department (PWD) specification. The addition of cup lump rubber provides better resistance against permanent deformation through the enhanced properties of resilient modulus and dynamic creep. Furthermore, the resilient modulus of CMA mixture performed better under aging conditions.  


2016 ◽  
Vol 10 (1) ◽  
pp. 511-523 ◽  
Author(s):  
Li Limin ◽  
He Zhaoyi ◽  
Liu Weidong ◽  
Hu Cheng ◽  
Liu Yang

To solve the problem of rutting and fatigue damage to asphalt pavement, rutting and fatigue performances of Qingchuan rock asphalt modified asphalt were studied, based on the dynamic shear rheometer test, the dynamic creep test, the rutting test, the indirect tensile fatigue test, the small-sized acceleration loading test, the compressive resilient modulus test, the BISAR3.0 Program and the rutting calculation method based on dynamic finite element method. The results indicate that Qingchuan rock asphalt modifier can obviously improve the anti-fatigue performance and anti-rutting performance of asphalt pavement. Taking the anti-rutting performance and the raw-material price of asphalt into consideration, a rock asphalt optimum content ranging from 5% to 8% is suggested. Qingchuan rock asphalt is a good modifier to solve the rutting and the fatigue damage of asphalt pavement.


2020 ◽  
Vol 39 (3) ◽  
pp. 654-664
Author(s):  
H.S. Otuoze ◽  
A.A. Shuaibu ◽  
H.A. Ahmed ◽  
I.T. Suleiman ◽  
I. Bello ◽  
...  

Synoptic findings by researchers have revealed tremendous physic-chemical improvements of polymer modified mixes over the conventional asphalt. Traditionally, laboratory mechanical properties were carried out for asphalt testing, but cannot calibrate simple performance test (SPTs) criteria for fatigue and field performance. Marshall test-sized specimens of polymer asphalt mixtures were engineered with arbitrary contents of 0 to 3.0% polypropylene waste admixed with 4.5 to 6.5% bitumen contents based on relevant literature. Creep deformation involves uniaxial static creep (USC) test using BS 598-111. Morphological examinations were test with Hitachi S-4700 field-emission scan-electron-microscope (FE-SEM). Thirdly, thermal degradation was determined using Shimadzu TGA-50 thermo-gravimetric analyzer. The results showed creep resistivity with fatigue recovery of 23.2% and 28.9% strain reduction at 10oC and 60oC respectively from the optimal 2.0% polypropylene and 6.0% bitumen compared to the control mix. Also, the same mix produced well dispersed and better enhanced pore packaging micro-structure capable of resisting ageing volatization under severe traffic and environmental loading conditions considered. Keywords: Asphalt pavement, polypropylene, creep deformation, age volatization and microstructure


2018 ◽  
Vol 8 (12) ◽  
pp. 2581 ◽  
Author(s):  
Yafeng Gong ◽  
Haipeng Bi ◽  
Zhenhong Tian ◽  
Guojin Tan

The objective of this research is to evaluate the pavement performance degradation of nano-TiO2/CaCO3 and basalt fiber composite modified asphalt mixtures under freeze‒thaw cycles. The freeze‒thaw resistance of composite modified asphalt mixture was studied by measuring the mesoscopic void volume, stability, indirect tensile stiffness modulus, splitting strength, uniaxial compression static, and dynamic creep rate. The equal-pitch gray prediction model GM (1, 3) was also established to predict the pavement performance of the asphalt mixture. It was concluded that the high- and low-temperature performance and water stability of nano-TiO2/CaCO3 and basalt fiber composite modified asphalt mixture were better than those of an ordinary asphalt mixture before and after freeze‒thaw cycles. The test results of uniaxial compressive static and dynamic creep after freeze‒thaw cycles showed that the high-temperature stability of the nano-TiO2/CaCO3 and basalt fiber composite modified asphalt mixture after freeze‒thaw was obviously improved compared with an ordinary asphalt mixture.


2012 ◽  
Vol 204-208 ◽  
pp. 4143-4146
Author(s):  
Zhong Guo He ◽  
Xin De Tang ◽  
Wen Jun Yin ◽  
Yi Fan Sun ◽  
Zhong Bo Liu

Montmorillonite/SBS composite modifed asphalts were prepared by mixing montmorillonite with SBS-modified asphalt, further the corresponding asphalt mixtures were obtained. The paving technical indexes of the mixture such as physical properties, moisture suscepyibility, and high temperature stability were tested, and compared with that of the corresponding SBS-modifed asphalt mixture and base asphalt mixture. The results demonstrate that the montmorillonite/SBS composite modifed asphalt mixture exhibites enhanced stability, improved flow value and moisture susceptibility, and increased high temperature stability.


2018 ◽  
Vol 250 ◽  
pp. 02007 ◽  
Author(s):  
Zainal Othman ◽  
Mohd Rosli Hainin ◽  
Muhammad Naqiuddin Mohd Warid ◽  
Mohd Khairul Idham ◽  
Siti Nur Naqibah Kamarudin

Issue of rubber additive in asphalt mixture has been discussed in asphalt industry Malaysia and its usage was suggested to be used in Pan Borneo Highway project. Using rubber additives can increase revenue rubber tappers in Malaysia. Hence, a study was conducted by the Public Works Department (PWD) and Malaysian Rubber Board (MRB) to investigate the properties of Cup Lumps Modified Asphalt (CMA) based on PWD specifications and its performance. The study area selected was at FT02, Jalan Kuala Lumpur - Kuantan, Temerloh Pahang. In this study, 5 % Cup Lump Modified Binder (CMB) were used. Tests involved were Penetration Softening Point, Flash Point, Dynamic Shear, Marshall, Road Scanner (RS), Falling Weight Deflectometer (FWD), Skid Resistance (Pendulum Test) and Dynamic Creep. The results indicate that CMB with bitumen 60/70 meet the specification. However, it will tend to rut when the temperature exceeds 70°C. For CMA mixture, it shows similar performance with conventional mixture. Meanwhile, at site, the performance for CMA pavement was better in surface condition (94 % good condition in roughness), structural condition (100 % good condition), skid resistance (SRV 63) and dynamic creep (32.01 MPa) compared to conventional pavement AC14. Thus, it can be suggested that the performance of CMA is better than conventional mixture AC14.


Sign in / Sign up

Export Citation Format

Share Document