scholarly journals Instruments of granular matrix mechanics for solving design-level tasks on shear strength resistance of loosely-coupled material in cast stone pavement

2019 ◽  
Vol 265 ◽  
pp. 01005
Author(s):  
Andrey Moshenzhal ◽  
Svetlana Zhdanova ◽  
Aleksey Piotrovich

The paper covers the method of distribution analysis for normal and shear stresses in a multilayer cast stone pavement design. The method is used to test the shear strength requirements. Some conclusions about the expediency of considering the granular matrix discrete structure applied in transport construction are made.

1986 ◽  
Vol 108 (4) ◽  
pp. 313-320 ◽  
Author(s):  
D. E. Helling ◽  
A. K. Miller ◽  
M. G. Stout

The multiaxial yield behaviors of 1100-0 aluminum, 70:30 brass, and an overaged 2024 aluminum alloy (2024-T7) have been investigated for a variety of prestress histories involving combinations of normal and shear stresses. Von Mises effective prestrains were in the range of 1.2–32%. Prestress paths were chosen in order to investigate the roles of prestress and prestrain direction on the nature of small-strain offset (ε = 5 × 10−6) yield loci. Particular attention was paid to the directionality, i.e., translation and distortion, of the yield locus. A key result, which was observed in all three materials, was that the final direction of the prestrain path strongly influences the distortions of the yield loci. Differences in the yield locus behavior of the three materials were also observed: brass and the 2024-T7 alloy showed more severe distortions of the yield locus and a longer memory of their entire prestrain history than the 1100-0 aluminum. In addition, more “kinematic” translation of the subsequent yield loci was observed in brass and 2024-T7 than in 1100-0 aluminum. The 2024-T7 differed from the other materials, showing a yield locus which decreased in size subsequent to plastic straining. Finally, the implications of these observations for the constitutive modeling of multiaxial material behavior are discussed.


1989 ◽  
Vol 16 (6) ◽  
pp. 902-909 ◽  
Author(s):  
Shahbaz Mavaddat ◽  
M. Saeed Mirza

Three computer programs, written in FORTRAN WATFIV, are developed to analyze straight, monolithically cast, symmetric concrete box beams with one, two, or three cells and side cantilevers over a simple span or over two spans with symmetric mid-span loadings. The analysis, based on Maisel's formulation, is performed in three stages. First, the structure is idealized as a beam and the normal and shear stresses are calculated using the simple bending theory and St-Venant's theory of torsion. The secondary stresses arising from torsional and distortional warping and shear lag are calculated in the second and third stages, respectively. The execution times on an AMDAHL 580 system are 0.02, 0.93, and 0.25 s for the three programs, respectively. The stresses arising in each stage of analysis are then superposed to determine the overall response of the box section to the applied loading. The results are compared with Maisel's hand calculations. Key words: bending, bimoment, box beam, computer analysis, FORTRAN, shear, shear lag, thin-walled section, torsion, torsional and distortional warping.


1975 ◽  
Vol 42 (3) ◽  
pp. 591-597 ◽  
Author(s):  
D. H. Wood ◽  
R. A. Antonia

Mean velocity and turbulence intensity measurements have been made in a fully developed turbulent boundary layer over a d-type surface roughness. This roughness is characterised by regular two-dimensional elements of square cross section placed one element width apart, with the cavity flow between elements being essentially isolated from the outer flow. The measurements show that this boundary layer closely satisfies the requirement of exact self-preservation. Distribution across the layer of Reynolds normal and shear stresses are closely similar to those found over a smooth surface except for the region immediately above the grooves. This similarity extends to distributions of third and fourth-order moments of longitudinal and normal velocity fluctuations and also to the distribution of turbulent energy dissipation. The present results are compared with those obtained for a k-type or sand grained roughness.


2019 ◽  
Vol 300 ◽  
pp. 17001 ◽  
Author(s):  
Cetin Morris Sonsino

Current experiences show that a non-proportional loading of ductile materials such as wrought steels, wrought aluminium or magnesium alloys, not welded or welded, causes a significant fatigue life reduction under an out-of-phase shear strain or shear stress superimposed on a normal strain or normal stress compared with proportional in-phase loading. However, when ductility, here characterised by tensile elongation, is reduced by a heat treatment or by another manufacturing technology such as casting or sintering, the afore-mentioned life reduction is compensated or even inversed, i. e. longer fatigue life results compared with proportional loading. Some actual results, determined with additive manufactured titanium, suggest that microstructural features such as manufacturing-dependent internal defects like microporosities should be considered in addition to the ductility level. This complex life behaviour under non-proportional loading cannot always be estimated. Therefore, in experimental proofs of multiaxial loaded parts, especially safety-critical components or structures, with real or service-like signals, emphasis must be placed on retaining non-proportionalities between loads and stresses/strains, respectively.


2020 ◽  
Vol 2 (2) ◽  
pp. 462-475
Author(s):  
Saad Issa Sarsam ◽  
Samah Abdulrazzaq AL Nuaimi

The durability of interface bond was not sufficiently taken into consideration, and the research work in this field is scares and scattered. The interface bond usually practices dynamic shear stresses throughout its service life while ageing due to volatilization provide stiffness at the interface. In this investigation, an attempt has been made to assess the durability of the interface bond in terms of resistance to ageing under repeated shear stresses. Two types of tack coat (Rapid Curing cutback RC-70 and Cationic Medium setting emulsion CMS) and three application rates have been implemented in the preparation of two layers slab samples (base overlaid by binder, and binder overlaid by wearing) courses using roller compactor. Asphalt concrete core specimens were obtained from the roller compacted slab samples and subjected to long term ageing, then the specimens were subjected to 1200 repeated shear stress cycles. The accumulation of permanent deformation was monitored. Afterwards, the specimens were tested for interface shear strength at 20 °C. Control specimens were also tested for comparison. It was concluded that ageing reduces the total microstrain for RC-70 tack coat by (43.6, 25.6, and 29.5) % and (50, 51.3, and 30.2) % for (binder-base) and (wearing-binder) interfaces for the application rate of (0.15, 0.33, 0.5) l/m2  respectively. However, ageing reduces the total microstrain for CMS tack coat by (37, 35.5, and 40.3) % and (45.2 , 49, and 46.8) % for (binder-base) and (wearing-binder) interfaces for the application rate of (0.1, 0.23, 0.35) l/m2  respectively. Ageing increases the interface bond shear strength by a range of (8-27)% for various interfaces, tack coat type and application rates.


2018 ◽  
Vol 55 (2) ◽  
pp. 296-302 ◽  
Author(s):  
Shiguo Xiao ◽  
Wei Dong Guo ◽  
Jinxiu Zeng

The factor of safety of a slope (Fs) is invariably assessed using methods underpinned by moment, force, and (or) shear strength equilibrium concerning slip surfaces. Each method inherently embeds some form of limitations, despite being popularly adopted in practice. In this paper, a new Fs is devised using the ratio of ultimate energy (eu, upon sliding) over accumulated “elastic” energy. The Fs is then reduced to a simple expression of the power to shear stress and shear strength, by taking soil as an elastic–plastic material obeying the Mohr–Coulomb failure criterion. This expression empowers significant efficacy in gaining the factor of safety (without involving energy or directions of shear stresses). The Fs values were calculated for three typical slopes concerning various mechanical properties (dilation, Poisson’s ratio, and shear modulus) and effective computational strategies. All of the Fs values (to a congruous accuracy of available methods) were obtained in less than 1% the time of conventional numerical analyses. The proposed Fs, equally applicable to limit equilibrium methods, may be utilized in practice to expedite slope design.


A general solution of the elastic equations is obtained for problems of stress distributions in plates or cylinders when the bounding faces of the plates Z = ± h , or the flat ends of the cylinders, are free from applied normal and shear stresses. The solution is expressed either in the form of Fourier series in the co-ordinate Z , or in power series in Z , the coefficients of the series being certain functions of the x and y co-ordinates which are sufficient to satisfy boundary conditions over two bounding cylindrical surfaces normal to the planes Z = ± h . The form of the theory is greatly simplified by making use of complex combinations of stress components, and by using the complex variable z = x + iy . A first approximation to the part of the theory which deals with the bending of the plate yields a theory similar in character to that given recently by Reissner.


Sign in / Sign up

Export Citation Format

Share Document