scholarly journals Simulation of vertical tidal turbine based on OpenFOAM and influence of inlet turbulence

2019 ◽  
Vol 272 ◽  
pp. 01017
Author(s):  
Liu Yun-ya ◽  
Yu-chen Yang ◽  
Ya-wen Yang

This paper first introduces the basic theory of CFD method, including basic control equations, finite volume method, control equation solving algorithm and turbulence model selection. Second, based on OpenFOAM, an open-source fluid mechanics software, a numerical simulation method of vertical axis tidal turbine was proposed by using k-ω SST turbulence model and PIMPLE algorithm. The hydrodynamic characteristics of the vertical axis turbine were studied, and the calculation results were compared with experiments. The higher consistency proves the feasibility of the numerical simulation method proposed in this paper. Finally, the influence of inlet turbulence on numerical simulation was explored, and a set of effective CFD simulation strategies was concluded, which provided a valuable reference for future CFD simulation and research on vertical axis tidal turbines.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xin He ◽  
Yaqing Chen ◽  
Yilong Ma ◽  
Dengfeng Hu ◽  
Haoran Gao

A hybrid numerical simulation method was established by combining the Spalart-Allmaras (SA) turbulence model and detached eddy simulation (DES). Numerical simulations were carried out to model cold and hot spray conditions of a nozzle without considering the internal flow of an engine to determine jet conditions. Analysis results show that the calculated hot spray results more in line with the reality. The jet effect of a typical aircraft engine was simulated numerically to determine the distance influenced by the jet blast from a departing aircraft engine.


2014 ◽  
Vol 1016 ◽  
pp. 694-699
Author(s):  
Xiao Ping Xu ◽  
Zhou Zhou

The numerical simulation method of active flow control technology was studied in this paper. The simplified mathematical model of the active flow control is established with unsteady velocity boundary condition at the specific location of model surface. The reliability of flow control model was verified by standard cases of CFDVAL2004, and the capability of capturing micro-jet flow characteristics for Spalart-Allmaras (SA) and Menter’s Shear Stress Transport (SST) turbulence model were analyzed. The results showed that the accuracy of SA turbulence model is better than the SST model, and flow control model meet the accuracy requirements for numerical simulation method.


2017 ◽  
Vol 322 ◽  
pp. 301-312 ◽  
Author(s):  
Susumu Yamashita ◽  
Takuya Ina ◽  
Yasuhiro Idomura ◽  
Hiroyuki Yoshida

2012 ◽  
Vol 229-231 ◽  
pp. 55-58
Author(s):  
Jun Fan

To obtain the know-how of the deficiency for the filling capability, taking Ti75 alloy as the research object, at the same height of reducing, strain rates during forming as the control objective, the finite element numerical simulation method was used to simulate the hot compression with DEFORM-3D, analyzing the effect of the strain rates on the distribution of strain and stress.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhengzhi Wang ◽  
Chunling Zhu

In view of the rotor icing problems, the influence of centrifugal force on rotor blade icing is investigated. A numerical simulation method of three-dimensional rotor blade icing is presented. Body-fitted grids around the rotor blade are generated using overlapping grid technology and rotor flow field characteristics are obtained by solving N-S equations. According to Eulerian two-phase flow, the droplet trajectories are calculated and droplet impingement characteristics are obtained. The mass and energy conservation equations of ice accretion model are established and a new calculation method of runback water mass based on shear stress and centrifugal force is proposed to simulate water flow and ice shape. The calculation results are compared with available experimental results in order to verify the correctness of the numerical simulation method. The influence of centrifugal force on rotor icing is calculated. The results show that the flow direction and distribution of liquid water on rotor surfaces change under the action of centrifugal force, which lead to the increasing of icing at the stagnation point and the decreasing of icing on both frozen limitations.


2013 ◽  
Vol 423-426 ◽  
pp. 1292-1295 ◽  
Author(s):  
Xing Yun Wang ◽  
Bin Peng ◽  
Xiao Chao Tang ◽  
Lian Fan

Based on the numerical simulation method, this paper has established the numerical simulation method by using of finite difference software of FLAC3D through establishing interface for digging pile-soil. It can consider mutual effect of digging pile-soil. The uplift bearing capacity of the digging pile in slope ground was calculated and the affecting factors of the bearing capacity were analyzed. The results show that the uplift bearing capacity has a negative correlation with the slope ratio, and has a positive correlation with the width or height of the foundation, which can be expressed as a quadratic polynomial. But when the slope ratio is smaller than a certain extent, the capacity no longer increases. Nonlinear regression analysis of calculation data are carried out. Finally, the calculation method of uplift bearing capacity about pile in the slope is developed, which can provide a reference to specification revision and engineering.


Sign in / Sign up

Export Citation Format

Share Document