scholarly journals Navigation architecture for hypersonic aircraft

2019 ◽  
Vol 304 ◽  
pp. 04008
Author(s):  
Luca Castigliola ◽  
Flavia Causa ◽  
Michele Grassi

This paper aims at presenting an integrated navigation algorithm designed for estimating the navigation state of the STRATOFLY vehicle (LAPCAT–MR3). STRATOFLY project has been funded by the European Commission, under the framework of Horizon 2020 plan, with the aim of assessing the potential of high–speed transport vehicle. The complex interaction between elements of an air-breathing hypersonic vehicle represents a new paradigm in aircraft design. In particular, one of the needs for early GNC analysis in the case of LAPCAT–MR3 vehicle is the assessment of navigation performance over the reference trajectory. The navigation algorithm presented in this paper is based on an augmented state EKF data fusion algorithm exploiting inertial measurements provided by gyroscopes and accelerometers, heading estimates provided by a magnetometer and satellite-based measurements provided by a spaceborne GNSS receiver, considering GPS, GLONASS and GALILEO constellations.

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Tai-shan Lou ◽  
Nan-hua Chen ◽  
Xiao-qian Wang ◽  
Zhen-dong He ◽  
Jie Liu

A reliable distributed covariance intersection (CI) fusion integrated navigation algorithm with information feedback during the Mars atmospheric entry is proposed to meet robust, reliable, and high-precision Mars atmospheric entry navigation strategy. A distributed integrated navigation scheme includes four independent subsystems consisting of an IMU and one radio beacon, but each subsystem is weakly observable under limited Mars entry measurements. The scalar weights are fast obtained by maximizing the information contribution of the corresponding estimate. The distributed framework based upon the CI fusion algorithm is designed by using dynamic information distribution coefficients and information feedback strategy. This distributed fusion approach could meet the lower computation cost and robust and reliable capacity and especially is beneficial to the weakly observable or unobservable subsystems during the Mars entry navigation scheme. Numerical simulations show that the proposed distributed CI fusion integrated navigation algorithm can provide consistent navigation accuracy for the Mars entry vehicle and improve the entry navigation robustness under the weakly observable navigation subsystems.


2020 ◽  
pp. 1-17
Author(s):  
Haiying Liu ◽  
Jingqi Wang ◽  
Jianxin Feng ◽  
Xinyao Wang

Abstract Visual–Inertial Navigation Systems (VINS) plays an important role in many navigation applications. In order to improve the performance of VINS, a new visual/inertial integrated navigation method, named Sliding-Window Factor Graph optimised algorithm with Dynamic prior information (DSWFG), is proposed. To bound computational complexity, the algorithm limits the scale of data operations through sliding windows, and constructs the states to be optimised in the window with factor graph; at the same time, the prior information for sliding windows is set dynamically to maintain interframe constraints and ensure the accuracy of the state estimation after optimisation. First, the dynamic model of vehicle and the observation equation of VINS are introduced. Next, as a contrast, an Invariant Extended Kalman Filter (InEKF) is constructed. Then, the DSWFG algorithm is described in detail. Finally, based on the test data, the comparison experiments of Extended Kalman Filter (EKF), InEKF and DSWFG algorithms in different motion scenes are presented. The results show that the new method can achieve superior accuracy and stability in almost all motion scenes.


2021 ◽  
Vol 13 (4) ◽  
pp. 703
Author(s):  
Lvyang Ye ◽  
Yikang Yang ◽  
Xiaolun Jing ◽  
Jiangang Ma ◽  
Lingyu Deng ◽  
...  

With the rapid development of satellite technology and the need to satisfy the increasing demand for location-based services, in challenging environments such as indoors, forests, and canyons, there is an urgent need to improve the position accuracy in these environments. However, traditional algorithms obtain the position solution through time redundancy in exchange for spatial redundancy, and they require continuous observations that cannot satisfy the real-time location services. In addition, they must also consider the clock bias between the satellite and receiver. Therefore, in this paper, we provide a single-satellite integrated navigation algorithm based on the elimination of clock bias for broadband low earth orbit (LEO) satellite communication links. First, we derive the principle of LEO satellite communication link clock bias elimination; then, we give the principle and process of the algorithm. Next, we model and analyze the error of the system. Subsequently, based on the unscented Kalman filter (UKF), we model the state vector and observation vector of our algorithm and give the state and observation equations. Finally, for different scenarios, we conduct qualitative and quantitative analysis through simulations, and the results show that, whether in an altimeter scenario or non-altimeter scenario, the performance indicators of our algorithm are significantly better than the inertial navigation system (INS), which can effectively overcome the divergence problem of INS; compared with the medium earth orbit (MEO) constellation, the navigation trajectory under the LEO constellation is closer to the real trajectory of the aircraft; and compared with the traditional algorithm, the accuracy of each item is improved by more than 95%. These results show that our algorithm not only significantly improves the position error, but also effectively suppresses the divergence of INS. The algorithm is more robust and can satisfy the requirements of cm-level real-time location services in challenging environments.


2021 ◽  
pp. 1-12
Author(s):  
Yongwei Tang ◽  
Huijuan Hao ◽  
Jun Zhou ◽  
Yuexiang Lin ◽  
Zhenzhen Dong

AGV (Automated Guided Vehicle) technology has attracted increasing attention. Precise control of AGV position and attitude information in complex operating environment is a key part of smart factories. With outdoor AGV as a platform, this study uses BDS/INS combined navigation system combining Beidou positioning system and inertial navigation system and takes the velocity and position difference between BDS and INS as a model. An integrated navigation method is proposed to improve bee colony algorithm and optimize the BP neural network-assisted Kalman filtering to achieve accurate positioning. Moreover, the optimization of BP neural network navigation using INS navigation, network-assisted navigation and bee colony algorithm is simulated. Results demonstrate that the integrated navigation algorithm has effectiveness and feasibility, and can solve the problems of BDS misalignment and large INS navigation error in complex environments.


Sign in / Sign up

Export Citation Format

Share Document