scholarly journals Selection Methodology of Potential Sensible Thermal Energy Storage Materials for Medium Temperature Applications

2020 ◽  
Vol 307 ◽  
pp. 01026 ◽  
Author(s):  
Soukaina Hrifech ◽  
Hassan Agalit ◽  
El Ghali Bennouna ◽  
Abdelaziz Mimet

Thermal energy storage (TES) component improves the revenue of a concentrating solar power (CSP) plant by allowing more heat to be stored and making the electric energy available during the absence of sunlight. The heat can be stored in three ways (sensible, latent, or thermochemical). The present work aims to identify and select cost-effective sensible TES systems suitable for the medium temperature range (100-300 °C) applications (e.g. Fresnel CSP plants, industrial waste heat recovery, etc.). Based on a literature review, a selection methodology is developed to select potential candidate solid TES media (e.g. natural rock, concrete, sand, etc. ) as filler material in direct or indirect contact with thermal oil, which is used generally as heat transfer fluid (HTF) for this temperature range. The main criteria and steps of this selection methodology are identified and they take into account the different decisive storage properties as thermo-physical and mechanical properties of the solid media. Finally, the potential candidate TES materials are identified for the targeted application and further indoor experimental investigations are briefly presented.

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6052
Author(s):  
Hamza Ayaz ◽  
Veerakumar Chinnasamy ◽  
Junhyeok Yong ◽  
Honghyun Cho

Sorption thermochemical storage systems can store thermal energy for the long-term with minimum amount of losses. Their flexibility in working with sustainable energy sources further increases their importance vis-à-vis high levels of pollution from carbon-based energy forms. These storage systems can be utilized for cooling and heating purposes or shifting the peak load. This review provides a basic understanding of the technologies and critical factors involved in the performance of thermal energy storage (TES) systems. It is divided into four sections, namely materials for different sorption storage systems, recent advances in the absorption cycle, system configuration, and some prototypes and systems developed for sorption heat storage systems. Energy storage materials play a vital role in the system design, owing to their thermal and chemical properties. Materials for sorption storage systems are discussed in detail, with a new class of absorption materials, namely ionic liquids. It can be a potential candidate for thermal energy storage due to its substantial thermophysical properties which have not been utilized much. Recent developments in the absorption cycle and integration of the same within the storage systems are summarized. In addition, open and closed systems are discussed in the context of recent reactor designs and their critical issues. Finally, the last section summarizes some prototypes developed for sorption heat storage systems.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3415
Author(s):  
Eugenia Teodora Iacob-Tudose ◽  
Ioan Mamaliga ◽  
Alexandru Vasilica Iosub

Thermal energy storage materials (TES) are considered promising for a large number of applications, including solar energy storage, waste heat recovery, and enhanced building thermal performance. Among these, nanoemulsions have received a huge amount of attention. Despite the many reviews published on nanoemulsions, an insufficient number concentrate on the particularities and requirements of the energy field. Therefore, we aim to provide a review of the measurement, theoretical computation and impact of the physical properties of nanoemulsions, with an integrated perspective on the design of thermal energy storage equipment. Properties such as density, which is integral to the calculation of the volume required for storage; viscosity, which is a decisive factor in pressure loss and for transport equipment power requirements; and thermal conductivity, which determines the heating/cooling rate of the system or the specific heat directly influencing the storage capacity, are thoroughly discussed. A comparative, critical approach to all these interconnected properties in pertinent characteristic groups, in close association with the practical use of TES systems, is included. This work aims to highlight unresolved issues from previous investigations as well as to provide a summary of the numerical simulation and/or application of advanced algorithms for the modeling, optimization, and streamlining of TES systems.


2012 ◽  
Vol 602-604 ◽  
pp. 1086-1089
Author(s):  
Qi Song Shi ◽  
Kui Long Liu

The myristic acid/silicon dioxide composite materials were prepared by sol-gel methods. The myristic acid was used as the phase change material for thermal energy storage, with the SiO2 acting as the supporting material. The structural analysis of these form-stable myristic acid /SiO2 composite phase change materials was carried out using Fourier transformation infrared spectroscope (FT-IR).The microstructure of the form-stable composite phase change materials was observed by a scanning electronic microscope (SEM). The thermal properties was investigated by a differential scanning calorimeter (DSC).The SEM results showed that the myristic acid was well dispersed in the porous network of SiO2. And the new nanocomposite material has favorable thermal storage capacity and can be applied to solar energy storage, industrial waste heat, recovery of waste heat and as civilian structural materials.


2019 ◽  
Author(s):  
Karolina Matuszek ◽  
R. Vijayaraghavan ◽  
Craig Forsyth ◽  
Surianarayanan Mahadevan ◽  
Mega Kar ◽  
...  

Renewable energy has the ultimate capacity to resolve the environmental and scarcity challenges of the world’s energy supplies. However, both the utility of these sources and the economics of their implementation are strongly limited by their intermittent nature; inexpensive means of energy storage therefore needs to be part of the design. Distributed thermal energy storage is surprisingly underdeveloped in this context, in part due to the lack of advanced storage materials. Here, we describe a novel family of thermal energy storage materials based on pyrazolium cation, that operate in the 100-220°C temperature range, offering safe, inexpensive capacity, opening new pathways for high efficiency collection and storage of both solar-thermal energy, as well as excess wind power. We probe the molecular origins of the high thermal energy storage capacity of these ionic materials and demonstrate extended cycling that provides a basis for further scale up and development.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2924
Author(s):  
Wei Wei ◽  
Yusong Guo ◽  
Kai Hou ◽  
Kai Yuan ◽  
Yi Song ◽  
...  

Distributed thermal energy storage (DTES) provides specific opportunities to realize the sustainable and economic operation of urban electric heat integrated energy systems (UEHIES). However, the construction of the theory of the model and the configuration method of thermal storage for distributed application are still challenging. This paper analyzes the heat absorption and release process between the DTES internal heat storage medium and the heat network transfer medium, refines the relationship between heat transfer power and temperature characteristics, and establishes a water thermal energy storage and electric heater phase change thermal energy storage model, considering medium temperature characteristics. Combined with the temperature transmission delay characteristics of a heat network, a two-stage optimal configuration model of DTES for UEHIES is proposed. The results show that considering the temperature characteristics in the configuration method can accurately reflect the performance of DTES, enhance wind power utilization, improve the operation efficiency of energy equipment, and reduce the cost of the system.


Thermo ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 106-121
Author(s):  
Miguel Ángel Reyes-Belmonte ◽  
Alejandra Ambrona-Bermúdez ◽  
Daniel Calvo-Blázquez

In this work, the flexible operation of an Integrated Solar Combined Cycle (ISCC) power plant has been optimized considering two different energy storage approaches. The objective of this proposal is to meet variable users’ grid demand for an extended period at the lowest cost of electricity. Medium temperature thermal energy storage (TES) and hydrogen generation configurations have been analyzed from a techno-economic point of view. Results found from annual solar plant performance indicate that molten salts storage solution is preferable based on the lower levelized cost of electricity (0.122 USD/kWh compared to 0.158 USD/kWh from the hydrogen generation case) due to the lower conversion efficiencies of hydrogen plant components. However, the hydrogen plant configuration exceeded, in terms of plant availability and grid demand coverage, as fewer design constraints resulted in a total demand coverage of 2155 h per year. It was also found that grid demand curves from industrial countries limit the deployment of medium-temperature TES systems coupled to ISCC power plants, since their typical demand curves are characterized by lower power demand around solar noon when solar radiation is higher. In such scenarios, the Brayton turbine design is constrained by noon grid demand, which limits the solar field and receiver thermal power design.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Iñigo Ortega-Fernández ◽  
Javier Rodríguez-Aseguinolaza ◽  
Antoni Gil ◽  
Abdessamad Faik ◽  
Bruno D’Aguanno

Slag is one of the main waste materials of the iron and steel manufacturing. Every year about 20 × 106 tons of slag are generated in the U.S. and 43.5 × 106 tons in Europe. The valorization of this by-product as heat storage material in thermal energy storage (TES) systems has numerous advantages which include the possibility to extend the working temperature range up to 1000 °C, the reduction of the system cost, and at the same time, the decrease of the quantity of waste in the iron and steel industry. In this paper, two different electric arc furnace (EAF) slags from two companies located in the Basque Country (Spain) are studied. Their thermal stability and compatibility in direct contact with the most common heat transfer fluids (HTFs) used in the concentrated solar power (CSP) plants are analyzed. The experiments have been designed in order to cover a wide range of temperature up to the maximum operation temperature of 1000 °C corresponding to the future generation of CSP plants. In particular, three different fluids have been studied: synthetic oil (Syltherm 800®) at 400 °C, molten salt (Solar Salt) at 500 °C, and air at 1000 °C. In addition, a complete characterization of the studied slags and fluids used in the experiments is presented showing the behavior of these materials after 500 hr laboratory-tests.


Sign in / Sign up

Export Citation Format

Share Document