scholarly journals A self-sovereign identity management scheme using smart contracts

2021 ◽  
Vol 336 ◽  
pp. 08005
Author(s):  
Jianlin Niu ◽  
Zhiyu Ren

The existing self-sovereign identity management schemes have some problems, such as weak availability and security risks. To solve these problems, we proposed a cross-domain self-sovereign identity management scheme using smart contracts. This scheme takes into account the entire lifecycle of identity, especially including the cross-domain use and recovery. To preserve the privacy data of users on the blockchain, we proposed a data storage method of anchoring on blockchain. Finally, we implemented this scheme using the Solidity programming language for smart contract. This scheme has been experimentally verified to be capable of maintaining the expenditure of resources under control and having good usability. Compared with other self-sovereign identity management schemes, this scheme has better performance in terms of controllability, security and portability.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Abid Hassan ◽  
Md. Iftekhar Ali ◽  
Rifat Ahammed ◽  
Mohammad Monirujjaman Khan ◽  
Nawal Alsufyani ◽  
...  

Traditional insurance policy settlement is a manual process that is never hassle-free. There are many issues, such as hidden conditions from the insurer or fraud claims by the insured, making the settlement process rough. This process also consumes a significant amount of time that makes the process very inefficient. This whole scenario can be disrupted by the implementation of blockchain and smart contracts in insurance. Blockchain and innovative contract technology can provide immutable data storage, security, transparency, authenticity, and security while any transaction process is triggered. With the implementation of blockchain, the whole insurance process, from authentication to claim settlement, can be done with more transparency and security. A blockchain is a virtual chain of data blocks that is a decentralized technology. Any transaction or change in the blocks is done after the decentralized validator entity, not a single person. The smart contract is a unique facility stored on the blockchain that gets executed when the predetermined conditions are met. This paper presents a framework where smart contracts are used for insurance contracts and stored on blockchain. In the case of a claim, if all the predetermined conditions are met, the transaction happens; otherwise, it is discarded. The conditions are immutable. That means there is scope for alteration from either side. This blockchain and intelligent contract-based framework are hosted on a private Ethereum network. The Solidity programming language is used to create smart contracts. The framework uses the Proof of Authority (PoA) consensus algorithm to validate the transactions. In the case of any faulty transaction request, the consensus algorithm acts according to and cancels the claim. With blockchain and smart contract implementation, this framework can solve all the trust and security issues that rely on a standard insurance policy.


2019 ◽  
Author(s):  
James Grimmelmann

Smart contracts are written in programming languages rather than in natural languages. This might seem to insulate them from ambiguity, because the meaning of a program is determined by technical facts rather than by social ones. It does not. Smart contracts can be ambiguous, too, because technical facts depend on socially determined ones. To give meaning to a computer program, a community of programmers and users must agree on the semantics of the programming language in which it is written. This is a social process, and a review of some famous controversies involving blockchains and smart contracts shows that it regularly creates serious ambiguities. In the most famous case, The DAO hack, more than $150 million in virtual currency turned on the contested semantics of a blockchain-based smart-contract programming language.


2019 ◽  
Author(s):  
Gamze Gürsoy ◽  
Charlotte M Brannon ◽  
Mark Gerstein

AbstractBackgroundWith the advent of precision medicine, pharmacogenomics data is becoming increasingly critical to patient care. These data describe the relationship between a particular variant in the genome and the response to a drug by the patient. As utilizing this kind of data becomes more integral to medical treatment decisions, appropriate storage and sharing of this data will be critical. A potential way of securely storing and sharing pharmacogenomics data is a smart contract with the Ethereum blockchain. This is an open-source blockchain platform for decentralized applications. A transaction-based, state machine, the “world” of Ethereum maintains user accounts and storage in a network state. Immutable pieces of code called “smart contracts” may be deployed to the Ethereum network and run on the Ethereum Virtual Machine when called by a user or other contract. The 2019 iDASH (Integrating Data for Analysis, Anonymization, and Sharing) competition for Secure Genome Analysis challenged participants to develop time- and space-efficient smart contracts to log and query gene-drug relationship data on the Ethereum blockchain.MethodsWe designed a smart contract to store and query pharmacogenomics data (gene-drug interaction data) in Ethereum using an index-based, multi-mapping approach allowing for time and space efficient storage and query. Our solution to the IDASH competition ranked in the top three at a workshop held in Bloomington, IN in October 2019. Although our solution performed well in the challenge, we wanted to improve its scalability and query efficiency. To that end, we developed an alternate “fastQuery” solution that stores pooled rather than raw data, allowing for significantly improved query time for 0-AND queries, and constant query time for 1- and 2-AND queries.ResultsWe tested the performance of both of our solutions in Truffle (v5.0.31) using datasets ranging from 100 to 1000 entries, and inserting data at 25, 50, 100, and 200 observations at a time. On a private, proof-of-authority test network, our challenge solution requires approximately 70 seconds, 500 MB of memory, and 80 MB of disk space to insert 1000 entries (200 at a time); and 400 ms and 5 MB of memory to query a two-AND query from 1000 entries. This solution exhibits constant memory for insertion and querying, and linear query time. Our alternate fastQuery solution requires approximately 60 seconds, 500 MB of memory, and 80 MB of disk space to insert 1000 entries (200 at a time); and 83 ms and 5 MB of memory to query a two-AND query from 1000 entries. This solution exhibits constant memory for insertion and querying, linear query time for 0-AND queries, and constant query time for 1- and 2-AND queries in a database of up to 1000 entries.ConclusionIn this study we showed that pharmacogenomics data can be stored and queried efficiently on the Ethereum blockchain. Our approach has the potential to be useful for a wide range of datasets in biomedical research; while we focused on gene-drug interaction data, our solution designs could be used to store a range of clinical trial data. Moreover, our solutions could be adapted to store and query data in any field where high-integrity data storage and efficient access is required.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 244
Author(s):  
Yeşem Kurt Peker ◽  
Xavier Rodriguez ◽  
James Ericsson ◽  
Suk Jin Lee ◽  
Alfredo J. Perez

Blockchain is a developing technology that can be utilized for secure data storage and sharing. In this work, we examine the cost of Blockchain-based data storage for constrained Internet of Things (IoT) devices. We had two phases in the study. In the first phase, we stored data retrieved from a temperature/humidity sensor connected to an Ethereum testnet blockchain using smart contracts in two different ways: first, appending the new data to the existing data, storing all sensor data; and second, overwriting the new data onto the existing data, storing only a recent portion of the data. In the second phase, we stored simulated data from several sensors on the blockchain assuming sensor data is numeric. We proposed a method for encoding the data from the sensors in one variable and compared the costs of storing the data in an array versus storing the encoded data from all sensors in one variable. We also compared the costs of carrying out the encoding within the smart contract versus outside the smart contract. In the first phase, our results indicate that overwriting data points is more cost-efficient than appending them. In the second phase, using the proposed encoding method to store the data from several sensors costs significantly less than storing the data in an array, if the encoding is done outside the smart contract. If the encoding is carried out in the smart contract, the cost is still less than storing the data in an array, however, the difference is not significant. The study shows that even though expensive, for applications where the integrity and transparency of data are crucial, storing IoT sensor data on Ethereum could be a reliable solution.


2021 ◽  
Vol 11 (16) ◽  
pp. 7653
Author(s):  
Katharina Sigalov ◽  
Xuling Ye ◽  
Markus König ◽  
Philipp Hagedorn ◽  
Florian Blum ◽  
...  

Construction projects usually involve signing various contracts with specific billing procedures. In practice, dealing with complex contract structures causes significant problems, especially with regard to timely payment and guaranteed cash flow. Furthermore, a lack of transparency leads to a loss of trust. As a result, late or non-payment is a common problem in the construction industry. This paper presents the concept of implementing smart contracts for automated, transparent, and traceable payment processing for construction projects. Automated billing is achieved by combining Building Information Modeling (BIM) approaches with blockchain-based smart contracts. Thereby, parts of traditional construction contracts are transferred to a smart contract. The smart contract is set up using digital BIM-based tender documents and contains all of the relevant data for financial transactions. Once the contracted construction work has been accepted by the client, payments can be made automatically via authorized financial institutions. This paper describes the framework, referred to as BIMcontracts, the container-based data exchange, and the digital contract management workflow. It discusses the industry-specific requirements for blockchain and data storage and explains which technical and software architectural decisions were made. A case study is used to demonstrate the current implementation of the concept.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1343
Author(s):  
Faiza Loukil ◽  
Khouloud Boukadi ◽  
Rasheed Hussain ◽  
Mourad Abed

The insurance industry is heavily dependent on several processes executed among multiple entities, such as insurer, insured, and third-party services. The increasingly competitive environment is pushing insurance companies to use advanced technologies to address multiple challenges, namely lack of trust, lack of transparency, and economic instability. To this end, blockchain is used as an emerging technology that enables transparent and secure data storage and transmission. In this paper, we propose CioSy, a collaborative blockchain-based insurance system for monitoring and processing the insurance transactions. To the best of our knowledge, the existing approaches do not consider collaborative insurance to achieve an automated, transparent, and tamper-proof solution. CioSy aims at automating the insurance policy processing, claim handling, and payment using smart contracts. For validation purposes, an experimental prototype is developed on Ethereum blockchain. Our experimental results show that the proposed approach is both feasible and economical in terms of time and cost.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 573
Author(s):  
Xiaochang Li ◽  
Zhengjun Zhai ◽  
Xin Ye

Emerging scale-out I/O intensive applications are broadly used now, which process a large amount of data in buffer/cache for reorganization or analysis and their performances are greatly affected by the speed of the I/O system. Efficient management scheme of the limited kernel buffer plays a key role in improving I/O system performance, such as caching hinted data for reuse in future, prefetching hinted data, and expelling data not to be accessed again from a buffer, which are called proactive mechanisms in buffer management. However, most of the existing buffer management schemes cannot identify data reference regularities (i.e., sequential or looping patterns) that can benefit proactive mechanisms, and they also cannot perform in the application level for managing specified applications. In this paper, we present an A pplication Oriented I/O Optimization (AOIO) technique automatically benefiting the kernel buffer/cache by exploring the I/O regularities of applications based on program counter technique. In our design, the input/output data and the looping pattern are in strict symmetry. According to AOIO, each application can provide more appropriate predictions to operating system which achieve significantly better accuracy than other buffer management schemes. The trace-driven simulation experiment results show that the hit ratios are improved by an average of 25.9% and the execution times are reduced by as much as 20.2% compared to other schemes for the workloads we used.


Sign in / Sign up

Export Citation Format

Share Document