scholarly journals Identification of the Model of the Dynamic System of a Milling Machine Based on the Study of Vibroacoustic Characteristics

2021 ◽  
Vol 346 ◽  
pp. 03030
Author(s):  
Rustem Khusainov ◽  
Dinar Safin

In this paper, the authors propose a method for ensuring the reliability of the computational model intended for the study of dynamic processes in technological cutting systems. The advantage of using 3D models in CAD/CAM/CAE systems for solving such problems is shown. The method of conducting an experimental study to identify the calculated model by natural frequencies is justified. The method is proposed for adjusting the 3D model in order to ensure that the dynamic pattern occurring during cutting corresponds to experimental processes. The authors give a concrete example of solving the problem of identifying the computational model of the dynamic system of a milling machine. An example of solving the applied problem of optimizing cutting modes in terms of vibration resistance parameters using the identified computational model is also given.

2016 ◽  
Vol 41 (2) ◽  
pp. 210-214 ◽  
Author(s):  
Amaia Hernandez ◽  
Edward Lemaire

Background and Aim: Prosthetic CAD/CAM systems require accurate 3D limb models; however, difficulties arise when working from the person’s socket since current 3D scanners have difficulties scanning socket interiors. While dedicated scanners exist, they are expensive and the cost may be prohibitive for a limited number of scans per year. A low-cost and accessible photogrammetry method for socket interior digitization is proposed, using a smartphone camera and cloud-based photogrammetry services. Technique: 15 two-dimensional images of the socket’s interior are captured using a smartphone camera. A 3D model is generated using cloud-based software. Linear measurements were comparing between sockets and the related 3D models. Discussion: 3D reconstruction accuracy averaged 2.6 ± 2.0 mm and 0.086 ± 0.078 L, which was less accurate than models obtained by high quality 3D scanners. However, this method would provide a viable 3D digital socket reproduction that is accessible and low-cost, after processing in prosthetic CAD software. Clinical relevance The described method provides a low-cost and accessible means to digitize a socket interior for use in prosthetic CAD/CAM systems, employing a smartphone camera and cloud-based photogrammetry software.


Author(s):  
M. S. Chepchurov ◽  
B. S. Chetverikov ◽  
A. N. Maslovskaja ◽  
N. S. Ljubimyj

The article discusses the questions of automation of design engineering in the sphere of the formation of 3D geometric model of work-pieces. The authors have designed and carried out an algorithm in the form of the additional script in the software bundle of the geometric modeling, enabling to execute the designation of surface finish in 3D models. The algorithm is based on the freeware CAD/CAM/CAE system – FreeCAD. The structure of an element from an ordered set of data about a geometric object that identifies the surface roughness is determined that allows to expand the capabilities of methods for providing storage and transmission of data of the electronic model of the product. Creation of additional procedures based on the formed list of surface finish according to the GOST 2.309–73 makes it possible to embody 3D-model transfer to the workplaces. It means that time of embodiment of preproduction and production of work-piece can be cut. Nowadays freeware solid geometry engine with open source code is not used due to the absence of additional specific possibilities of making of engineering drawings according to the regulatory requirements. The authors have offered the method of increasing the capabilities of software bundle of the geometric modeling, which provides the increase of target audience of freeware. The authors propose to use free cross-platform language Python to create the script of designation of surface finish in the space of 3D-model. Usage of the example of the script and its testing can help to design other procedures of making of engineering drawings to create fully-featured free cross-platform geometric designing.


Author(s):  
Джугурян Т.Г. ◽  
Марчук В.І. ◽  
Марчук І. В.

During the design of operations of centerless intermittent grinding of surfaces there is a need to identify the natural frequencies of oscillations of the elements of the technological system of grinding. The method of calculation of rigidity, vibration resistance and forced oscillations of the elements of the circular grinding machine is offered in the article. Carrying out of experimental researches of rigidity of elastic system of the SASL 5AD grinding machine. We conducted preliminary experimental studies to measure the oscillations of various elements of the elastic system of the SASL 5AD grinding machine in the horizontal plane by piezoelectric sensors during grinding with continuous and discontinuous circles with different geometric parameters.


2016 ◽  
Vol 684 ◽  
pp. 111-119 ◽  
Author(s):  
Stanislav Rafaelevich Abulkhanov ◽  
Dmitrii Sergeevich Goryainov

Natural frequencies of the four upgraded front searchlight designs were received in ANSYS software environment. In the first case serial front searchlight incandescent electric lamp was replaced by a LED group which was mounted on the one-piece cylinder backing. The second front searchlight design had the backing which was upgraded by a radial ribs and concentric rigidity ferrules. Analyze of the backing deformation character by vibrations with the natural frequencies established a number of design solutions which make it possible to raise front searchlight vibration resistance. By the front searchlight model were established that the natural frequencies of the searchlight with the one-piece backing appertain to the whole range of the train vibrations. Natural frequencies of the backing with perforation, rigidity ferrules, and radial ribs appertain to the low frequencies of the railway locomotive vibrations spectrum. On basis of devised methodology of analyze of the deformation and natural frequencies of the surface carrying a LED group the vibration-proof searchlight design was introduced and researched.


2013 ◽  
Vol 631-632 ◽  
pp. 1335-1341
Author(s):  
Shi Yong ◽  
Wen Tao Liu

In order to meet the needs of enterprises for chamfering complex parts, based on the customization of commercial CAD/CAM software, chamfer programming software is developed. According to user’s machining demands for a part, a chain of edges of a part is extracted from its 3D model. With preprocessing of the chain of edges, the continuity of the chain is estimated, and the start and end point of those edges are automatic obtained. Furthermore, with human-machine dialogue, machining parameters is set by users. By definition of the primary and secondary surfaces of the chain of edges, and interpolation of the edges, the positions of cutter location point and postures of cutter are calculated. Finally the interference of tool path is checked, and tool path is simulated. The software solves the programming problem of chamfering complex parts.


Author(s):  
M. Abdelaziz ◽  
M. Elsayed

<p><strong>Abstract.</strong> Underwater photogrammetry in archaeology in Egypt is a completely new experience applied for the first time on the submerged archaeological site of the lighthouse of Alexandria situated on the eastern extremity of the ancient island of Pharos at the foot of Qaitbay Fort at a depth of 2 to 9 metres. In 2009/2010, the CEAlex launched a 3D photogrammetry data-gathering programme for the virtual reassembly of broken artefacts. In 2013 and the beginning of 2014, with the support of the Honor Frost Foundation, methods were developed and refined to acquire manual photographic data of the entire underwater site of Qaitbay using a DSLR camera, simple and low cost materials to obtain a digital surface model (DSM) of the submerged site of the lighthouse, and also to create 3D models of the objects themselves, such as statues, bases of statues and architectural elements. In this paper we present the methodology used for underwater data acquisition, data processing and modelling in order to generate a DSM of the submerged site of Alexandria’s ancient lighthouse. Until 2016, only about 7200&amp;thinsp;m<sup>2</sup> of the submerged site, which exceeds more than 13000&amp;thinsp;m<sup>2</sup>, was covered. One of our main objectives in this project is to georeference the site since this would allow for a very precise 3D model and for correcting the orientation of the site as regards the real-world space.</p>


Author(s):  
D. Einaudi ◽  
A. Spreafico ◽  
F. Chiabrando ◽  
C. Della Coletta

Abstract. Rebuilding the past of cultural heritage through digitization, archiving and visualization by means of digital technology is becoming an emerging issue to ensure the transmission of physical and digital documentation to future generations as evidence of culture, but also to enable present generation to enlarge, facilitate and cross relate data and information in new ways. In this global effort, the digital 3D documentation of no longer existing cultural heritage can be essential for the understanding of past events and nowadays, various digital techniques and tools are developing for multiple purposes.In the present research the entire workflow, starting from archive documentation collection and digitization to the 3D models metrically controlled creation and online sharing, is considered. The technical issues to obtain a detail 3D model are examined stressing limits and potentiality of 3D reconstruction of disappeared heritage and its visualization exploiting three complexes belonging to 1911 Turin World’s Fair.


Author(s):  
Ryuji Nakada ◽  
Masanori Takigawa ◽  
Tomowo Ohga ◽  
Noritsuna Fujii

Digital oblique aerial camera (hereinafter called “oblique cameras”) is an assembly of medium format digital cameras capable of shooting digital aerial photographs in five directions i.e. nadir view and oblique views (forward and backward, left and right views) simultaneously and it is used for shooting digital aerial photographs efficiently for generating 3D models in a wide area. &lt;br&gt;&lt;br&gt; For aerial photogrammetry of public survey in Japan, it is required to use large format cameras, like DMC and UltraCam series, to ensure aerial photogrammetric accuracy. &lt;br&gt;&lt;br&gt; Although oblique cameras are intended to generate 3D models, digital aerial photographs in 5 directions taken with them should not be limited to 3D model production but they may also be allowed for digital mapping and photomaps of required public survey accuracy in Japan. &lt;br&gt;&lt;br&gt; In order to verify the potency of using oblique cameras for aerial photogrammetry (simultaneous adjustment, digital mapping and photomaps), (1) a viewer was developed to interpret digital aerial photographs taken with oblique cameras, (2) digital aerial photographs were shot with an oblique camera owned by us, a Penta DigiCAM of IGI mbH, and (3) accuracy of 3D measurements was verified.


Sign in / Sign up

Export Citation Format

Share Document