scholarly journals Prediction of PM2.5 concentration based on BP neural network optimized by bee colony algorithm

2022 ◽  
Vol 355 ◽  
pp. 03025
Author(s):  
Jie Heng ◽  
Min Li

According to the ambient air pollutants data and meteorological conditions data of Mianyang City in 2017, the BP neural network model based on MATLAB is established to predict the daily average PM2.5 concentration of Mianyang City in the next two days. However, the traditional BP network has the disadvantages of slow convergence speed and easy to fall into local optimum. In order to improve the prediction accuracy of the model, an optimization algorithm is added to the prediction model to avoid the model falling into local minimum. In this paper, the bee colony algorithm is added to the prediction model to improve the accuracy of BP neural network prediction model. The data from January to November are used for training, and the data from December are used as the verification results. The results show that the optimization model can accurately predict the daily average PM2.5 concentration of Mianyang City in the next two days, which provides a new idea for the prediction of PM2.5 concentration of the city, provides a theoretical basis for the early warning and decision-making of air pollution, and also provides more reliable prediction services for people’s daily travel.

2010 ◽  
Vol 97-101 ◽  
pp. 250-254 ◽  
Author(s):  
Xin Jian Zhou

On the basis of orthogonal test analysis of variance, BP neural network is used to forecast quantitatively the stamping spring-back of front panel of a car body, namely the engine hood, under the conditions of different stamping parameters. Firstly, BP neural network prediction model is established and sample training is done in Matlab. Then, the spring-back prediction using BP neural network and the result of spring-back simulation using Dynaform is compared to verify the precision and stability of the prediction model. Lastly, modification is made to the BP neural network according to practical stamping parameters and an efficient BP neural network model is established. Using this model, stamping spring-back prediction for the front panel of a car body is made. The spring-back prediction could then be used for spring-back compensation in the mould design of the front panel.


2012 ◽  
Vol 479-481 ◽  
pp. 1263-1267
Author(s):  
Na Rui Bu ◽  
Run Shan Bai ◽  
Zhang Zhen Li ◽  
De Zhong Lin

Analysis of slope stability based on BP neural network, the analytical model of slope stability is built. Aiming at the defects that BP neural network is likely to fall into local optimum in the progress of parameter optimization; DE is associated to put forward the DE-BP neural network prediction model that is coded by real numbers. The results show that this model has a high precision for the analysis of slope stability. It is feasible and efficient to analyze slope stability based on BP neural network.


2013 ◽  
Vol 756-759 ◽  
pp. 3366-3371 ◽  
Author(s):  
Ruo Bo Xin ◽  
Zhi Fang Jiang ◽  
Ning Li ◽  
Lu Jian Hou

In order to obtain high precision results of urban air quality forecast, we propose a short-term predictive model of air quality in this paper, which is on the basis of the ambient air quality monitoring data and relevant meteorological data of a monitoring site in Licang district of Qingdao city in recent three years. The predictive model is based on BP neural network and used to predict the ambient air quality in the next some day or within a certain period of hours. In the design of the predictive model, we apply LM algorithm, Simulated Annealing algorithm and Early Stopping algorithm into BP network, and use a reasonable method to extract the historical data of two years as the training samples, which are the main reasons why the prediction results are better both in speed and in accuracy. And when predicting within a certain period of hours, we also adopt an average and equivalent idea to reduce the error accuracy, which brings us good results.


2011 ◽  
Vol 1 ◽  
pp. 163-167
Author(s):  
Da Ke Wu ◽  
Chun Yan Xie

Leafminer is one of pest of many vegetables, and the damage may cover so much of the leaf that the plant is unable to function, and yields are noticeably decreased. In order to get the information of the pest in the vegetable before the damage was not serious, this research used a BP neural network to classify the leafminer-infected tomato leaves, and the fractal dimension of the leaves was the input data of the BP neural network. Prediction results showed that when the number of FD was 21 and the hidden nodes of BP neural network were 21, the detection performance of the model was good and the correlation coefficient (r) was 0.836. Thus, it is concluded that the FD is an available technique for the detection of disease level of leafminer on tomato leaves.


2012 ◽  
Vol 524-527 ◽  
pp. 180-183
Author(s):  
Feng Gao

Total energy, maximum peak amplitude and RMS amplitude are sensitive to sand body, and they are non-linear relations with sand thickness. In this study, a three-layer BP neural network is employed to build the prediction model. Nine samples were analyzed by three-layer BP network. The relationships were produced by BP network between sand thickness and the three seismic attributes. The precise prediction results indicate that the three-layer BP network based modeling is a practically very useful tool in prediction sand thickness. The BP model provided better accuracy in prediction than other methods.


2014 ◽  
Vol 536-537 ◽  
pp. 837-840
Author(s):  
Jiang Sun ◽  
Chong Wei

A BP neural network model was employed to forecast the railway freight turnover. First, this paper analyses the data of railway freight turnover in China from 1998 to 2012, build a three layers BP neural network, then by training and learning, a well-trained network can be used for simulating and forecasting. Finally, predict by the Grey GM(1,1) model and well-trained BP neural network respectively, and compares the errors of two prediction model, the results show that predicting the railway freight turnover by BP neural network has higher precision.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 593 ◽  
Author(s):  
Qiangjian Gao ◽  
Yingyi Zhang ◽  
Xin Jiang ◽  
Haiyan Zheng ◽  
Fengman Shen

The Ambient Compressive Strength (CS) of pellets, influenced by several factors, is regarded as a criterion to assess pellets during metallurgical processes. A prediction model based on Artificial Neural Network (ANN) was proposed in order to provide a reliable and economic control strategy for CS in pellet production and to forecast and control pellet CS. The dimensionality of 19 influence factors of CS was considered and reduced by Principal Component Analysis (PCA). The PCA variables were then used as the input variables for the Back Propagation (BP) neural network, which was upgraded by Genetic Algorithm (GA), with CS as the output variable. After training and testing with production data, the PCA-GA-BP neural network was established. Additionally, the sensitivity analysis of input variables was calculated to obtain a detailed influence on pellet CS. It has been found that prediction accuracy of the PCA-GA-BP network mentioned here is 96.4%, indicating that the ANN network is effective to predict CS in the pelletizing process.


2020 ◽  
Vol 305 ◽  
pp. 163-168
Author(s):  
Peng Gu ◽  
Chuan Min Zhu ◽  
Yin Yue Wu ◽  
Andrea Mura

As the typical particle-reinforced aluminum matrix composite, SiCp/Al composite has low density, high elastic modulus and high thermal conductivity, and is one of the most competitive metal matrix composites. Grinding is the main processing technique of SiCp/Al composite, energy consumption of the grinding process provides guidance for the energy saving, which is the aim of green manufacturing. In this paper, grinding experiments were designed and conducted to obtain the energy consumption of the grinding machine tool. The Particle Swarm Optimization (PSO) BP neural network prediction model was applied in the energy consumption prediction model of SiCp/Al composite in grinding. It showed that the Particle Swarm Optimization (PSO) BP neural network prediction model has high prediction accuracy. The prediction model of energy consumption based on PSO-BP neural network is helpful in energy saving, which contributes to greening manufacturing.


2014 ◽  
Vol 986-987 ◽  
pp. 1356-1359
Author(s):  
You Xian Peng ◽  
Bo Tang ◽  
Hong Ying Cao ◽  
Bin Chen ◽  
Yu Li

Audible noise prediction is a hot research area in power transmission engineering in recent years, especially come down to AC transmission lines. The conventional prediction models at present have got some problems such as big errors. In this paper, a prediction model is established based on BP network, in which the input variables are the four factors in the international common expression of power line audible noise and the noise value is the output. Take multiple measured power lines as an example, a train is made by the BP network and then the prediction model is set up in the hidden layer of the network. Using the trained model, the audible noise values are predicted. The final results show that the average absolute error in absolute terms of the values by the audible noise prediction model based on BP neural network is 1.6414 less than that predicted by the GE formula.


Sign in / Sign up

Export Citation Format

Share Document