Mechanism of action of tin on the semi-conductive properties of PbO layer in lead acid battery

2021 ◽  
Vol 109 (1) ◽  
pp. 106
Author(s):  
Toufik Dilmi ◽  
Achour Dakhouche ◽  
Mohamed Benaicha ◽  
H’mida Latelli

Although antimony in alloys for lead-acid batteries has better mechanical and electrochemical performance, it reduces the excessive potential for hydrogen evolution, resulting in excessive water loss and self-discharge of the battery. This paper aims to examine the action of tin in PbSn using different techniques. In this work, the addition of tin in PbCa was intended to suppress the premature capacity loss (PCL) caused by the substitution of antimony in the PbSb alloy by calcium that has good mechanical properties and a high hydrogen evolution potential (200 mV higher than that of antimony). This substitution induces the formation of a passive film composed mainly of α-PbO. The mechanism of action of tin on the anodic film obtained at 700 mV vs. Hg/Hg2SO4/K2SO4 saturated electrode with Pb – (0–5) wt.% Sn in 0.5 mol/L sulfuric acid solution at 25 °C was studied using electrochemical impedance spectroscopy (EIS), AC voltammetry, Mott–Schottky plots and X-ray diffraction (XRD) of the film obtained. It was found that tin stops the growth of the anodic film due to the co-precipitation of certain conductive oxides which reduce the thickness of the passive film and increase its conductivity. A mechanism of action of tin on the electrochemical behavior of the anodic film was suggested based on the results.

2020 ◽  
Vol 67 (1) ◽  
pp. 38-47
Author(s):  
Zeinab Abdel Hamid ◽  
H.B. Hassan ◽  
Mohamed Sultan

Purpose The improvement of the hydrogen evolution reaction (HER) performance requires more efficient and inexpensive electrocatalysts. The purpose of this study is to prepare Ni-W and Ni-W-P thin films using the electrodeposition technique using a pulse current and investigate their behaviors toward HER in an acidic solution. Design/methodology/approach The aim is to prepare Ni-W and Ni-W-P films by the electrodeposition technique using a pulse current and estimate their performance for the HER. The surface morphologies and chemical compositions of the deposited films were assessed using scanning electron microscopy, energy-dispersive X-ray analysis and X-ray diffraction. Linear sweep voltammetry, chronoamperometry, Tafel plots and electrochemical impedance spectroscopy were used to evaluate the prepared electrodes toward the hydrogen evolution process. Findings The main conclusion is that the surface morphology of Ni–W deposited film is a crystalline structure, while that of Ni-W-P deposit is an amorphous structure. HER activity on Ni-W electrodes increases with decreasing the Wt.% of W to 7.83 Wt.% in the prepared electrodes. In addition, the presence of P enhances HER activity, which increases with increasing the Wt.% of P in the prepared Ni-W-P electrodes. Both Ni-W (7.83 Wt.% W) and Ni-W-P (20.34 Wt.% P), which have been prepared at 8 A dm−2 display the best performance toward HER compared to the other prepared electrodes. They exhibit high catalytic activities toward HER, which is evidenced by high hydrogen evolution current density values of 9.52 and 33.98 mA cm−2, low onset potentials of −0.73 and −0.63 V, low Tafel slopes of −125 mV/dec, high exchange current densities of 0.058 and 0.20 mA cm−2, low charge transfer resistances (Rct) of 226.28 and 75.8 ohm·cm2 for Ni-W (7.83  Wt.% W) and Ni-W-P (20.34  Wt.% P), respectively; moreover, they exhibited considerable stabilities too. Originality/value The results presented in this work are an insight into understanding the performance of the prepared Cu electrodes coated by Ni-W and Ni-W-P films toward HER. In this work, a consistent assessment of the results achieved on laboratory scale has been conducted.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuehua Wang ◽  
Xianghu Wang ◽  
Jianfeng Huang ◽  
Shaoxiang Li ◽  
Alan Meng ◽  
...  

AbstractConstruction of Z-scheme heterostructure is of great significance for realizing efficient photocatalytic water splitting. However, the conscious modulation of Z-scheme charge transfer is still a great challenge. Herein, interfacial Mo-S bond and internal electric field modulated Z-scheme heterostructure composed by sulfur vacancies-rich ZnIn2S4 and MoSe2 was rationally fabricated for efficient photocatalytic hydrogen evolution. Systematic investigations reveal that Mo-S bond and internal electric field induce the Z-scheme charge transfer mechanism as confirmed by the surface photovoltage spectra, DMPO spin-trapping electron paramagnetic resonance spectra and density functional theory calculations. Under the intense synergy among the Mo-S bond, internal electric field and S-vacancies, the optimized photocatalyst exhibits high hydrogen evolution rate of 63.21 mmol∙g−1·h−1 with an apparent quantum yield of 76.48% at 420 nm monochromatic light, which is about 18.8-fold of the pristine ZIS. This work affords a useful inspiration on consciously modulating Z-scheme charge transfer by atomic-level interface control and internal electric field to signally promote the photocatalytic performance.


2021 ◽  
Vol 63 (6) ◽  
pp. 505-511
Author(s):  
Songkran Vongsilathai ◽  
Anchaleeporn Waritswat Lothongkum ◽  
Gobboon Lothongkum

Abstract A new duplex 25Cr-3Ni-7Mn-0.66 N alloy was prepared in a vacuum arc re-melting furnace and characterized by metallographic and EPMA methods. Its corrosion behavior was investigated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and a Mott-Schottky (M-S) analysis in artificial seawater at room temperature and compared with those of super and normal commercial duplex stainless steel (SDSS and DSS). No significant difference in the open circuit potentials and pitting potentials was observed. Its passive film current density lies between those of SDSS and DSS. This was confirmed by EIS analysis. A pit attack was observed on the δ-phase for all duplex samples, because the PREN16 of the δ-phase was lower than that of the γ-phase. From the Mott-Schottky analysis, the passive films were found to be composed of bi-layer structures, a p-type semiconductor inner layer, and a n-type semiconductor outer layer. The degree of defect as well as the effect of nitrogen in passive film layer are discussed with respect to the point defect model.


Author(s):  
Ghazanfar Abbas ◽  
Rizwan Raza ◽  
Muhammad Ashraf Chaudhry ◽  
Bin Zhu

The entire world’s challenge is to find out the renewable energy sources due to rapid depletion of fossil fuels because of their high consumption. Solid Oxide Fuel Cells (SOFCs) are believed to be the best alternative source which converts chemical energy into electricity without combustion. Nanostructured study is required to develop highly ionic conductive electrolyte for SOFCs. In this work, the calcium doped ceria (Ce0.8Ca0.2O1.9) coated with 20% molar ratio of two alkali carbonates (CDC-M: MCO3, where M = Na and K) electrolyte was prepared by co-precipitation method in this study. Ni based electrode was used to fabricate the cell by dry pressing technique. The crystal structure and surface morphology was characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM). The particle size was calculated in the range of 10–20nm by Scherrer’s formula and compared with SEM and TEM results. The ionic conductivity was measured by using AC Electrochemical Impedance Spectroscopy (EIS) method. The activation energy was also evaluated. The performance of the cell was measured 0.567W/cm2 at temperature 550°C with hydrogen as a fuel.


2015 ◽  
Vol 25 ◽  
pp. 02001
Author(s):  
Guobin Zhong ◽  
Wei Su ◽  
Dong Chen ◽  
Jiayuan Xiang ◽  
Xianzhang Wu ◽  
...  

2007 ◽  
Vol 26-28 ◽  
pp. 937-940 ◽  
Author(s):  
Dong Jin Kim ◽  
Hyuk Chul Kwon ◽  
Seong Sik Hwang ◽  
Hong Pyo Kim

Alloy 600 is used as a material for a steam generator tubing in pressurized water reactors(PWR) due to its high corrosion resistance under a PWR environment. In spite of its corrosion resistance, a stress corrosion cracking(SCC) has occurred on the primary side as well as the secondary side of a tubing. It is known that a SCC is related to the electrochemical behaviors of an anodic dissolution and a passivation of a bare surface of metals and alloys. Therefore in the present work, the passive oxide films on Alloy 600 have been investigated as a function of the solution temperature by using a potentiodynamic polarization, electrochemical impedance spectroscopy and a TEM, equipped with EDS. Moreover the semiconductive property was evaluated by using the Mott-Schottky relation. It was found that the passivity depends on the chemical composition and the densification of the oxide film rather than the oxide thickness. As the solution temperature of 0.5M H3BO3 increased, the thickness of the passive film increased but the oxide resistance of the passive film was decreased, indicating that the measured current in the passive region of the potentiodynamic curve is closely related to the stability of the passive film rather than the oxide thickness. It was found that the oxide films were composed of an outer oxide layer with a lower resistance and an inner oxide layer with a relatively higher resistance. From the Mott-Schottky relation, the oxide formed at 300oC showed a p-type semiconductor property unlike the n-type oxide films up to 250oC.


Sign in / Sign up

Export Citation Format

Share Document