Effect of the upset pressure on Microstructure and Properties of Friction Welded Joints of 6082 aluminum alloy/304 stainless steel

2021 ◽  
Vol 118 (5) ◽  
pp. 507
Author(s):  
Gui-peng Lu ◽  
Li-zhe Zhao ◽  
Wei Liu ◽  
Yu-meng Sun ◽  
Wen-biao Gong

The dissimilar connection between 6082 aluminum alloy and 304 stainless steel was realized by continuous drive friction welding. Microstructures of the joint were studied by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffractometry (XRD). In the process of continuous drive welding, the intermetallic compounds (IMCs) Fe2Al5 phase was observed at the interface, the formation mechanism of IMC was discussed, and the corresponding analysis model was established. When the upset pressure in the range of 6–10 MPa, the element diffusion distance increases with the increase of upset pressure. The tensile strength of the joint increased firstly and then decreased with the increase of upset pressure. The joint’s maximum tensile strength can reach 234 MPa, and tensile fracture of the joint exhibited brittle-tough mixed fracture characteristics.

2011 ◽  
Vol 415-417 ◽  
pp. 1938-1941
Author(s):  
Wei Yu Ho ◽  
Chia Hang Tsai ◽  
Cheng Hsun Hsu ◽  
Woei Yun Ho

In recent years, advances in coating deposition technologies have led to the development of nano-structured coating materials with unique properties. Among the many systems, Cr-Al-Si-N coatings have a variety of interesting properties such as the superhardness (~40 GPa), thermal stability with high-temperature oxidation resistance. These coatings were characterized as nanocomposites consisting of nanocrystalline CrN or CrAlN embedded in amorphous Si3N4 matrix. Nevertheless extensive discussion has been focused on the mechanical and thermal properties of Cr-Al-Si-N coating, the corrosion resistance at higher temperature is not reported yet. Therefore, the main target of this study is to evaluate the corrosion resistance of the CrN/AlSiN multilayer coating which was synthesized by cathodic arc deposition with Cr and Al88Si12 dual cathodes. The as-deposited coating was following conducted with heat treatment in nitrogen atmosphere at the temperature of 400 oC, 600 oC and 800 oC for 1 hour, respectively. Microstructure of the heated films is analyzed by X-ray photoelectron spectroscope, X-ray diffractometer and scanning electron microscopy. The corrosion resistance of the heated CrN/AlSiN coatings was studied by dipping in the aluminum alloy melt for 3 hours. The results turned out that the better corrosion resistance of CrN/AlSiN multilayer coated stainless steel was obtained by post deposition annealing treatment in nitrogen at 400 oC and 600 oC if compared to that of the other samples.


CORROSION ◽  
10.5006/1813 ◽  
2015 ◽  
Vol 71 (10) ◽  
pp. 1171-1176 ◽  
Author(s):  
Veronica Rafla ◽  
Andrew D. King ◽  
Sarah Glanvill ◽  
Aaron Parsons ◽  
Alison Davenport ◽  
...  

2000 ◽  
Vol 42 (8) ◽  
pp. 807-812 ◽  
Author(s):  
S Fukumoto ◽  
H Tsubakino ◽  
K Okita ◽  
M Aritoshi ◽  
T Tomita

2010 ◽  
Vol 1276 ◽  
Author(s):  
F. García-Vázquez ◽  
I. Guzmán-Flores ◽  
A. Garza ◽  
J. Acevedo

AbstractBrazing is a unique method to permanently join a wide range of materials without oxidation. It has wide commercial application in fabricating components. This paper discusses results regarding the brazing process of 304 stainless steel. The experimental brazing is carried out using a nickel-based (Ni-11Cr-3.5Si-2.25B-3.5Fe) filler alloy. In this process, boron and silicon are incorporated to reduce the melting point, however they form hard and brittle intermetallic compounds with nickel (eutectic phases) which are detrimental to the mechanical properties of brazed joints. This investigation deals with the effects of holding time and brazing temperature on the microstructure of joint and base metal, intermetallic phases formation within the brazed joint as well as measurement of the tensile strength. The results show that a maximum tensile strength of 464 MPa is obtained at 1120°C and 4 h holding time. The shortest holding times will make boron diffuse insufficiently and generate a great deal of brittle boride components.


2013 ◽  
Vol 815 ◽  
pp. 778-781
Author(s):  
Xiao Hong Wu

Used YAG pulse laser to weld 304 stainless steel nuts, studied about the parameters such as peak power, pulse width, defocus distance impacting on the performance of the joints welded by laser. The studies showed that the tensile strength and torque of the nuts increased as the peak power and the pulse width increased.Burn through in welding easy occur when laser pulse energy is too big, pulse width is too wide or defocus distance is too low.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 984
Author(s):  
Faisal I. Alresheedi ◽  
James E. Krzanowski

An X-ray diffraction investigation was carried out on nitrogen-containing 304 stainless steel thin films deposited by reactive rf magnetron sputtering over a range of substrate temperature and bias levels. The resulting films contained between ~28 and 32 at.% nitrogen. X-ray analysis was carried out using both the standard Bragg-Brentano method as well as area-detector diffractometry analysis. The extent of the diffraction anomaly ((002) peak shift) was determined using a calculated parameter, denoted RB, which is based on the (111) and (002) peak positions. The normal value for RB for FCC-based structures is 0.75 but increases as the (002) peak is anomalously displaced closer to the (111) peak. In this study, the RB values for the deposited films were found to increase with substrate bias but decrease with substrate temperature (but still always >0.75). Using area detector diffractometry, we were able to measure d111/d002 values for similarly oriented grains within the films, and using these values calculate c/a ratios based on a tetragonal-structure model. These results allowed prediction of the (002)/(200) peak split for tetragonal structures. Despite predicting a reasonably accessible split (~0.6°–2.9°–2θ), no peak splitting observed, negating the tetragonal-structure hypothesis. Based on the effects of film bias/temperature on RB values, a defect-based hypothesis is more viable as an explanation for the diffraction anomaly.


2014 ◽  
Vol 915-916 ◽  
pp. 576-582 ◽  
Author(s):  
H. C. Wu ◽  
B. Yang ◽  
Ming Xian Zhang ◽  
Sheng Long Wang ◽  
Y. Z. Shi

The effect of forging and solution temperature on the microstructure and mechanical properties of 316LN stainless steel has been investigated by optical microscope, tensile testing machine and scanning electron microscope (SEM). The results show that the average grain size of the steel was refined from 150μm to 70μm after forging and solution treatment. With increasing solution temperature, the tensile strength and yield strength decreased. On the contrary, the elongation of the steel increased with increasing solution temperature except at 1200°C. The tensile strength of the samples forged at 1100°C is better than those of the samples forged at 1000 and 1200°Cafter solution treatment. Tensile fracture morphologies observation showed that all the specimens have ductile fracture morphologies. With increasing solution temperature, the toughness of the steel becomes better and better except at 1200°C. Both the microstructure and mechanical properties of the 316LN stainless steel have been improved after forging at 1100°C and following by solution treatment at 1150°C.


Sign in / Sign up

Export Citation Format

Share Document