scholarly journals Determination of chemical parameters and storage stability of extra virgin olive oil extracted by Mobile Olive Oil Processing Unit

OCL ◽  
2020 ◽  
Vol 27 ◽  
pp. 6 ◽  
Author(s):  
Esmaeil Ghanbari Shendi ◽  
Dilek Sivri Ozay ◽  
Mucahit Taha Ozkaya ◽  
Nimeti Feyza Ustunel

The effects of storage time on the stability and quality of cold press extra virgin olive oils (EVOO) extracted from cv. Tavşan Yüreği locally grown in Antalya Region of Anatolia was investigated. The Mobile Olive Oil Processing Unit (TEM Oliomio 500-2GV, Italy) was designed and used for the monocultivar olive oil production. Changes on the free fatty acid, peroxide value, UV absorption values, total phenol content, phenolic and tocopherol profiles, and sensory properties of EVOO samples were determined for 12 months. Results showed that fresh “Tavşan Yüreği” EVOO was classified as EVOO declared by the International Olive Council (IOC) standards-based in terms of chemical and sensory properties. It had a sensory profile with an equilibrated taste of intense fruitiness and medium bitterness and pungency at the end of one year. Although positive attributes (fruitiness, bitterness, and pungency) slightly decreased, color values of EVOO changed from green to yellow. Although total phenols content of EVOO samples were 385.27 ± 0.908 ppm at the beginning of storage, it decreased to 327.58 ± 0.212 ppm after a year storing. Luteolin was the most abundant phenolic compound and its content decreased by 14% at the end of storage, while tyrosol content of EVOO increased from 12 to 36.17 ppm. After twelve months, α-tocopherol contents decreased 22.38%. Using Mobile Olive Oil Processing Unit increased oxidative stability and quality of extracted EVOO.

2020 ◽  
Vol 4 (3) ◽  
pp. 38
Author(s):  
Giuseppe Cinelli ◽  
Martina Cofelice ◽  
Francesco Venditti

This review traces the current knowledge on the effects of various factors and phenomena that occur at interface, and the role of dispersed phase on the physicochemical, sensorial and nutritional characteristics of veiled extra virgin olive oil (VVOO). Since 1994 there have been numerous articles in the literature regarding the peculiar characteristic of unfiltered olive oil, so-called veiled or cloud virgin olive oil. It is a colloidal system (emulsion–sol), where the continuous lipidic phase dispreads mini droplets of milling water, fragments of cells and biotic fraction obtained from oil processing. During storage, the dispersed phase collapses and determines the quality of the virgin olive oil (VOO). The observed phenomena lead to worsening the quality of the product by causing defects such as oxidation of phenols, triacylglycerols hydrolysis and off-flavor formation. The addition of bioactive compounds, such as vitamins, on product based on VVOO, must take into account the eventual synergistic effect of individual substances. The role of the interphase is crucial to the synergic activity of bioactive molecules in improving oxidative stability, sensorial and health characteristics of VVOO.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2161
Author(s):  
Leeanny Caipo ◽  
Ana Sandoval ◽  
Betsabet Sepúlveda ◽  
Edwar Fuentes ◽  
Rodrigo Valenzuela ◽  
...  

Commercialization of extra virgin olive oil (EVOO) requires a best before date recommended at up to 24 months after bottling, stored under specific conditions. Thus, it is expected that the product retains its chemical properties and preserves its ‘extra virgin’ category. However, inadequate storage conditions could alter the properties of EVOO. In this study, Arbequina EVOO was exposed to five storage conditions for up to one year to study the effects on the quality of the oil and the compounds responsible for flavor. Every 15 or 30 days, samples from each storage condition were analyzed, determining physicochemical parameters, the profiles of phenols, volatile compounds, α-tocopherol, and antioxidant capacity. Principal component analysis was utilized to better elucidate the relationships between the composition of EVOOs and the storage conditions. EVOOs stored at −23 and 23 °C in darkness and 23 °C with light, differed from the oils stored at 30 and 40 °C in darkness. The former was associated with a higher quantity of non-oxidized phenolic compounds and the latter with higher elenolic acid, oxidized oleuropein, and ligstroside derivatives, which also increased with storage time. (E)-2-nonenal (detected at trace levels in fresh oil) was selected as a marker of the degradation of Arbequina EVOO quality over time, with significant linear regressions identified for the storage conditions at 30 and 40 °C. Therefore, early oxidation in EVOO could be monitored by measuring (E)-2-nonenal levels.


2019 ◽  
Vol 13 (1) ◽  
Author(s):  
E. Ghanbari Shendi ◽  
D. Sivri Ozay ◽  
M.T. Ozkaya ◽  
N.F. Ustunel

Upper Mesopotamia is a part of Turkish territory is the homeland of the olive tree with a wide range genetic resource. This is the first report on chemical composition and oxidative stability of olive oil extracted from Uslu cultivar grown locally in a small amount.  In this research, a Turkish olive cultivar named as “Uslu” locally grown in Akhisar was used for production of monocultivar extra virgin olive oil by using Mobile Olive Oil Processing Unit”. Olive oil samples were bottled before and after filtration and stored up to 24 months. Some chemical properties such as free fatty acid content, peroxide value, moisture content, UV absorbance value, minor and major components (fatty acid composition, tocopherols, total phenol compounds and phenolic composition), were determined during storage for 24 months. Chemical parameters such as free fatty acid, peroxide value except UV absorption values of both filtered and unfiltered “Uslu” olive oil samples were in agreement with the trade standards of International Olive Council (IOC). Color values of EVOO changed from green to yellow while UV absorbance values altered during storage. Very low free fatty acidy (0.2%) values which are unusual for commercial olive oils in Turkey were obtained for filtered and unfiltered samples. A slight increase was seen for unfiltered sample at the end of storage.  Filtration had no detectable effect on fatty acid profile. Filtered sample had higher total phenols (407.64±4.051 ppm) and α-tocopherol (237 and 123.31 ppm) contents than unfiltered ones and their contents decreased approximately 50% at the end of storage. Luteolin was the most abundant phenolic compound and its concentration decreased from 268.65±5.428 to 93.57±0.541ppm during storage. It seemed effect of filtration was more obvious on total phenolic contents. This study was good practice for producing premium extra virgin olive oil by using Mobile Olive Oil Processing Unit. The results obtained in this study showed that Uslu olive oils has a unique chemical composition and a good oxidative stability with high tocopherols and phenolics contents that are uncommon in most of the commercial olive oils.


2021 ◽  
Vol 141 ◽  
pp. 322-329
Author(s):  
Jihed Faghim ◽  
Mbarka Ben Mohamed ◽  
Mohamed Bagues ◽  
Kamel Nagaz ◽  
Tebra Triki ◽  
...  

2006 ◽  
Vol 29 (2) ◽  
pp. 139-150 ◽  
Author(s):  
VINCENZO VACCA ◽  
ALESSANDRA DEL CARO ◽  
MARCO POIANA ◽  
ANTONIO PIGA

2018 ◽  
Vol 12 (3) ◽  
Author(s):  
E. Ghanbari Shend ◽  
D. Sivri Ozay ◽  
M . T. Ozkaya ◽  
N. F. Ustunelc

In this study Turkish monocultivar extra virgin olive oil (EVOO) “Sarı Ulak” was extracted by using the Mobile Olive Oil Processing Unit (TEM Oliomio 500-2GV, Italy). Changes in minor and major components and quality characteristics, free fatty acid content, peroxide value and UV absorbance value, were surveyed during a year’s storage period. “Sarı Ulak” olive oil samples were classified as EVOO according to the trade standards of the International Olive Council (IOC) based on free fatty acid, peroxide value, K232 and ΔK values up to the eighth month of the storage period. The results have shown that color values of EVOO changed from green to yellow slowly while UV absorbance values changed during storing. Total polyphenol content of extra virgin olive oil decreased from 205.17 ppm to 144.29 ppm during a year’s storage. Luteolin was the most abundant phenolic compound, and its concentration changed from 184.33 ppm to 115.06 ppm. Apigenin concentration was differed from 2.67 to 1.06 ppm during storing. The initial level of α-tocopherol contents was 184.51 ppm, it decreased to 147 ppm at the end of storage time. After 12 months of storing, about 20 % of α-tocopherol content was destroyed. The amounts of phenolic and tocopherol isomers decreased during storage as expected.


2019 ◽  
Vol 244 ◽  
pp. 1-10 ◽  
Author(s):  
Basheer M. Iqdiam ◽  
Manal O. Abuagela ◽  
Sara M. Marshall ◽  
Yavuz Yagiz ◽  
Renee Goodrich-Schneider ◽  
...  

2017 ◽  
Vol 221 ◽  
pp. 107-113 ◽  
Author(s):  
G. Veneziani ◽  
S. Esposto ◽  
A. Taticchi ◽  
S. Urbani ◽  
R. Selvaggini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document