The advent of X-ray free electron lasers

Photoniques ◽  
2021 ◽  
pp. 22-26
Author(s):  
Marie-Emmanuelle Couprie

Free Electron Lasers (FEL) use free electrons in the periodic permanent magnetic field of an undulator as a gain medium. They extend from far infrared to X-rays, they are easily tunable and provide a high peak power. The advent of tunable intense (few mJ) short pulse (down to the attosecond regime) FELs with record multi GW peak power in the X-ray domain enables to explore new scientific areas. These unprecedent X-ray sources come along with versatile performance.

Author(s):  
Philippe Wernet

X-ray free-electron lasers with intense, tuneable and short-pulse X-ray radiation are transformative tools for the investigation of transition-metal complexes and metalloproteins. This becomes apparent in particular when combining the experimental observables from X-ray spectroscopy with modern theoretical tools for calculations of electronic structures and X-ray spectra from first principles. The combination gives new insights into how charge and spin densities change in chemical reactions and how they determine reactivity. This is demonstrated for the investigations of structural dynamics with metal K-edge absorption spectroscopy, spin states in excited-state dynamics with metal 3p-3d exchange interactions, the frontier-orbital interactions in dissociation and substitution reactions with metal-specific X-ray spectroscopy, and studies of metal oxidation states with femtosecond pulses for ‘probe-before-destroy’ spectroscopy. The role of X-ray free-electron lasers is addressed with thoughts about how they enable ‘bringing back together’ different aspects of the same problem and this is thought to go beyond a conventional review paper where these aspects are formulated in italic font type in a prequel, an interlude and in a sequel. This article is part of the theme issue ‘Measurement of ultrafast electronic and structural dynamics with X-rays'.


2016 ◽  
Vol 23 (6) ◽  
pp. 1273-1281 ◽  
Author(s):  
Takashi Tanaka ◽  
Yong Woon Parc ◽  
Yuichiro Kida ◽  
Ryota Kinjo ◽  
Chi Hyun Shim ◽  
...  

A method is proposed to generate an isolated attosecond X-ray pulse in free-electron lasers, using irregularly spaced current peaks induced in an electron beam through interaction with an intense short-pulse optical laser. In comparison with a similar scheme proposed in a previous paper, the irregular arrangement of current peaks significantly improves the contrast between the main and satellite pulses, enhances the attainable peak power and simplifies the accelerator layout. Three different methods are proposed for this purpose and achievable performances are computed under realistic conditions. Numerical simulations carried out with the best configuration show that an isolated 7.7 keV X-ray pulse with a peak power of 1.7 TW and pulse length of 70 as can be generated. In this particular example, the contrast is improved by two orders of magnitude and the peak power is enhanced by a factor of three, when compared with the previous scheme.


2019 ◽  
Vol 88 (1) ◽  
pp. 35-58 ◽  
Author(s):  
Henry N. Chapman

X-ray free-electron lasers provide femtosecond-duration pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities. One motivation for the development of such X-ray sources was the proposal to obtain structures of macromolecules, macromolecular complexes, and virus particles, without the need for crystallization, through diffraction measurements of single noncrystalline objects. Initial explorations of this idea and of outrunning radiation damage with femtosecond pulses led to the development of serial crystallography and the ability to obtain high-resolution structures of small crystals without the need for cryogenic cooling. This technique allows the understanding of conformational dynamics and enzymatics and the resolution of intermediate states in reactions over timescales of 100 fs to minutes. The promise of more photons per atom recorded in a diffraction pattern than electrons per atom contributing to an electron micrograph may enable diffraction measurements of single molecules, although challenges remain.


Author(s):  
Tetsuya Ishikawa

The evolution of synchrotron radiation (SR) sources and related sciences is discussed to explain the ‘generation’ of the SR sources. Most of the contemporary SR sources belong to the third generation, where the storage rings are optimized for the use of undulator radiation. The undulator development allowed to reduction of the electron energy of the storage ring necessary for delivering 10 keV X-rays from the initial 6–8 GeV to the current 3 Gev. Now is the transitional period from the double-bend-achromat lattice-based storage ring to the multi-bend-achromat lattice to achieve much smaller electron beam emittance. Free electron lasers are the other important accelerator-based light sources which recently reached hard X-ray regime by using self-amplified spontaneous emission scheme. Future accelerator-based X-ray sources should be continuous wave X-ray free electron lasers and pulsed X-ray free electron lasers. Some pathways to reach the future case are discussed. This article is part of the theme issue ‘Fifty years of synchrotron science: achievements and opportunities’.


2019 ◽  
Vol 20 (6) ◽  
pp. 1401 ◽  
Author(s):  
Marius Schmidt

The focus of structural biology is shifting from the determination of static structures to the investigation of dynamical aspects of macromolecular function. With time-resolved macromolecular crystallography (TRX), intermediates that form and decay during the macromolecular reaction can be investigated, as well as their reaction dynamics. Time-resolved crystallographic methods were initially developed at synchrotrons. However, about a decade ago, extremely brilliant, femtosecond-pulsed X-ray sources, the free electron lasers for hard X-rays, became available to a wider community. TRX is now possible with femtosecond temporal resolution. This review provides an overview of methodological aspects of TRX, and at the same time, aims to outline the frontiers of this method at modern pulsed X-ray sources.


2019 ◽  
Vol 26 (3) ◽  
pp. 619-628 ◽  
Author(s):  
Wenqiang Hua ◽  
Guangzhao Zhou ◽  
Zhe Hu ◽  
Shumin Yang ◽  
Keliang Liao ◽  
...  

X-ray free-electron lasers (XFELs) play an increasingly important role in addressing the new scientific challenges relating to their high brightness, high coherence and femtosecond time structure. As a result of pulse-by-pulse fluctuations, the pulses of an XFEL beam may demonstrate subtle differences in intensity, energy spectrum, coherence, wavefront, etc., and thus on-line monitoring and diagnosis of a single pulse are required for many XFEL experiments. Here a new method is presented, based on a grating splitter and bending-crystal analyser, for single-pulse on-line monitoring of the spatial characteristics including the intensity profile, coherence and wavefront, which was suggested and applied experimentally to the temporal diagnosis of an XFEL single pulse. This simulation testifies that the intensity distribution, coherence and wavefront of the first-order diffracted beam of a grating preserve the properties of the incident beam, by using the coherent mode decomposition of the Gaussian–Schell model and Fourier optics. Indicatively, the first-order diffraction of appropriate gratings can be used as an alternative for on-line monitoring of the spatial properties of a single pulse without any characteristic deformation of the principal diffracted beam. However, an interesting simulation result suggests that the surface roughness of gratings will degrade the spatial characteristics in the case of a partially coherent incident beam. So, there exists a suitable roughness value for non-destructive monitoring of the spatial properties of the downstream beam, which depends on the specific optical path. Here, experiments based on synchrotron radiation X-rays are carried out in order to verify this method in principle. The experimental results are consistent with the theoretical calculations.


1993 ◽  
Vol 306 ◽  
Author(s):  
Brian J. Macgowan ◽  
S. Mrowka ◽  
T. W. Barbee ◽  
L. B. DA SILVA ◽  
D.C. EDER ◽  
...  

AbstractIn many applications, x-ray mulhilayer mirrors are exposed to high peak fluxes of x-rays with subsequent damage to the mirror. Mirror damage is a particularly severe problem with the use of multilayers as cavity optics for short wavelength x-ray lasers. Intense optical and x-ray radiation, from the x-ray laser plasma amplifier, often damages the multilayer mirror on time scales of hundreds of picoseconds. The phenomenon of multilayer mirror damage by pulsed xray emission has been studied using short duration (500 psec) bursts of soft x-rays from a laser produced gold plasma. The results of the experiments will be compared with some simple models and the possibility of increasing the damage thresholds of short wavelength multilayer mirrors will be discussed.


Sign in / Sign up

Export Citation Format

Share Document