Altered Brain Regional Homogeneity in First-Degree Relatives of Type 2 Diabetics: A functional MRI Study

2019 ◽  
Vol 128 (11) ◽  
pp. 737-744
Author(s):  
Yiyong Liu ◽  
Lin Shi ◽  
Xiubao Song ◽  
Changzheng Shi ◽  
Wutao Lou ◽  
...  

Abstract Objective This study aimed to investigate regional homogeneity in the first-degree relatives of type 2 diabetes patients. Methods Seventy-eight subjects, including 26 type 2 diabetes patients, 26 first-degree relatives, and 26 healthy controls, were assessed. All participants underwent resting-state functional magnetic resonance imaging scanning. The estimated regional homogeneity value was used to evaluate differences in brain activities. Results In first-degree relatives, we observed significantly decreased regional homogeneity in the left anterior cingulate cortex, left insula, and bilateral temporal lobes, and increased regional homogeneity in the left superior frontal gyrus, right anterior cingulate cortex, and bilateral posterior cingulate cortex compared to healthy controls. In type 2 diabetes patients, we detected altered regional homogeneity in the left anterior cingulate cortex, left insula, bilateral posterior cingulate cortex, and several other brain regions compared to healthy controls. Both first-degree relatives and type 2 diabetes patients showed decreased regional homogeneity in the left superior temporal gyrus, right middle temporal gyrus, left anterior cingulate cortex, left insula, and increased regional homogeneity in the left superior frontal gyrus and bilateral posterior cingulate cortex. Conclusion These findings suggest that altered regional homogeneity in the left anterior cingulate cortex, left insula, left superior frontal gyrus, bilateral posterior cingulate cortex, and bilateral temporal lobes might be a neuroimaging biomarker of type 2 diabetes -related brain dysfunction.

2005 ◽  
Vol 289 (4) ◽  
pp. G722-G730 ◽  
Author(s):  
Adeyemi Lawal ◽  
Mark Kern ◽  
Arthi Sanjeevi ◽  
Candy Hofmann ◽  
Reza Shaker

Earlier studies have documented activation of the cingulate cortex during gut related sensory-motor function. However, topography of the cingulate cortex in relationship to various levels of visceromotor sensory stimuli and gender is not completely elucidated. The aim was to characterize and compare the activation topography of the cingulate cortex in response to 1) subliminal, 2) perceived rectal distensions, and 3) external anal sphincter contraction (EASC) in males and females. We studied 18 healthy volunteers (ages 18–35 yr; 10 women, 8 men) using functional MRI blood-oxygenation-level-dependent technique. We obtained 11 axial slices (voxel vol. 2.5–6.0 × 2.5 × 2.5 mm3) through the cingulate cortex during barostat-controlled subliminal, liminal, and supraliminal nonpainful rectal distensions as well as EASC. Overall, for viscerosensation, the anterior cingulate cortex exhibited significantly more numbers of activated cortical voxels for all levels of stimulations compared with the posterior cingulate cortex ( P < 0.05). In contrast, during EASC, activity in the posterior cingulate was larger than in the anterior cingulate cortex ( P < 0.05). Cingulate activation was similar during EASC in males and females ( P = 0.58), whereas there was a gender difference in anterior cingulate activation during liminal and supraliminal stimulations ( P < 0.05). In females, viscerosensory cortical activity response was stimulus-intensity dependent. Intestinal viscerosensation and EASC induce different patterns of cingulate cortical activation. There may be gender differences in cingulate cortical activation during viscerosensation. In contrast to male subjects, females exhibit increased activity in response to liminal nonpainful stimulation compared with subliminal stimulation suggesting differences in cognition-related recruitment.


2019 ◽  
Vol 16 (11) ◽  
pp. 1063-1071 ◽  
Author(s):  
Gonzague Foucault ◽  
Guillaume T Duval ◽  
Romain Simon ◽  
Olivier Beauchet ◽  
Mickael Dinomais ◽  
...  

Background: Vitamin D insufficiency is associated with brain changes, and cognitive and mobility declines in older adults. Method: Two hundred and fifteen Caucasian older community-dwellers (mean±SD, 72.1±5.5years; 40% female) received a blood test and brain MRI. The thickness of perigenual anterior cingulate cortex, midcingulate cortex and posterior cingulate cortex was measured using FreeSurfer from T1-weighted MR images. Age, gender, education, BMI, mean arterial pressure, comorbidities, use of vitamin D supplements or anti-vascular drugs, MMSE, GDS, IADL, serum calcium and vitamin B9 concentrations, creatinine clearance were used as covariables. Results: Participants with vitamin D insufficiency (n=80) had thinner total cingulate thickness than the others (24.6±1.9mm versus 25.3±1.4mm, P=0.001); a significant difference found for all 3 regions. Vitamin D insufficiency was cross-sectionally associated with a decreased total cingulate thickness (β=- 0.49, P=0.028). Serum 25OHD concentration correlated positively with the thickness of perigenual anterior (P=0.011), midcingulate (P=0.013) and posterior cingulate cortex (P=0.021). Conclusion: Vitamin D insufficiency was associated with thinner cingulate cortex in the studied sample of older adults. These findings provide insight into the pathophysiology of cognitive and mobility declines in older adults with vitamin D insufficiency.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jizheng Zhao ◽  
Dardo Tomasi ◽  
Corinde E. Wiers ◽  
Ehsan Shokri-Kojori ◽  
Şükrü B. Demiral ◽  
...  

Negative urgency (NU) and positive urgency (PU) are implicated in several high-risk behaviors, such as eating disorders, substance use disorders, and nonsuicidal self-injury behavior. The current study aimed to explore the possible link between trait of urgency and brain activity at rest. We assessed the amplitude of low-frequency fluctuations (ALFF) of the resting-state functional magnetic resonance imaging (fMRI) signal in 85 healthy volunteers. Trait urgency measures were related to ALFF in the lateral orbitofrontal cortex, dorsolateral prefrontal cortex, ventral and dorsal medial frontal cortex, anterior cingulate, and posterior cingulate cortex/precuneus. In addition, trait urgency measures showed significant correlations with the functional connectivity of the posterior cingulate cortex/precuneus seed with the thalamus and midbrain region. These findings suggest an association between intrinsic brain activity and impulsive behaviors in healthy humans.


2021 ◽  
Author(s):  
Mohammad Ali Salehinejad ◽  
Elham Ghanavati ◽  
Mohammed Harun Ar Rashid ◽  
Michael A Nitsche

Executive functions (EFs), or cognitive control, are higher-order cognitive functions needed for adaptive goal-directed behaviours and are significantly impaired in majority of neuropsychiatric disorders. Different models and approaches are proposed for describing how EFs are functionally organized in the brain. One popular and recently proposed organizing principle of EFs is the distinction between hot (i.e., reward or affective-related) vs cold (i.e., purely cognitive) domains of EFs. The prefrontal cortex is traditionally linked to EFs, but on the other hand, anterior and posterior cingulate cortices are involved in EFs as well. In this review, we first define EFs, their domains, and the appropriate methods for studying them. Second, we discuss how hot and cold EFs are linked to different areas of the prefrontal cortex. Third, we discuss the association of hot vs cold EFs with the cingulate cortex with a specific focus on anterior and posterior compartments. Finally, we propose a functional model for hot and cold EF organization in the brain with a specific focus on the fronto-cingular network. We also discuss clinical implications of hot vs cold cognition in major neuropsychiatric disorders (depression, schizophrenia, anxiety disorders, substance use disorder, attention-deficit hyperactivity disorder, and autism) and attempt to characterize their profile according to the functional dominance of hot-cold cognition. Our model proposes that the lateral prefrontal cortex, along with the dorsal anterior cingulate cortex are more relevant for cold EFs and the medial-orbital prefrontal cortex along with the ventral anterior cingulate cortex, and posterior cingulate cortex are more closely involved in hot EFs. This functional distinction, however, is not absolute and depends on several factors including task features, context, and the extent to which the measured function relies on cognition and emotion or both.


2021 ◽  
Vol 15 ◽  
Author(s):  
Petr Bednarik ◽  
Benjamin Spurny ◽  
Leo R. Silberbauer ◽  
Alena Svatkova ◽  
Patricia A. Handschuh ◽  
...  

Ketamine is a powerful glutamatergic long-lasting antidepressant, efficient in intractable major depression. Whereas ketamine’s immediate psychomimetic side-effects were linked to glutamate changes, proton MRS (1H-MRS) showed an association between the ratio of glutamate and glutamine and delayed antidepressant effect emerging ∼2 h after ketamine administration. While most 1H-MRS studies focused on anterior cingulate, recent functional MRI connectivity studies revealed an association between ketamine’s antidepressant effect and disturbed connectivity patterns to the posterior cingulate cortex (PCC), and related PCC dysfunction to rumination and memory impairment involved in depressive pathophysiology. The current study utilized the state-of-the-art single-voxel 3T sLASER 1H-MRS methodology optimized for reproducible measurements. Ketamine’s effects on neurochemicals were assessed before and ∼3 h after intravenous ketamine challenge in PCC. Concentrations of 11 neurochemicals, including glutamate (CRLB ∼ 4%) and glutamine (CRLB ∼ 13%), were reliably quantified with the LCModel in 12 healthy young men with between-session coefficients of variation (SD/mean) &lt;8%. Also, ratios of glutamate/glutamine and glutamate/aspartate were assessed as markers of synaptic function and activated glucose metabolism, respectively. Pairwise comparison of metabolite profiles at baseline and 193 ± 4 min after ketamine challenge yielded no differences. Minimal detectable concentration differences estimated with post hoc power analysis (power = 80%, alpha = 0.05) were below 0.5 μmol/g, namely 0.39 μmol/g (∼4%) for glutamate, 0.28 μmol/g (∼10%) for Gln, ∼14% for glutamate/glutamine and ∼8% for glutamate/aspartate. Despite the high sensitivity to detect between-session differences in glutamate and glutamine concentrations, our study did not detect delayed glutamatergic responses to subanesthetic ketamine doses in PCC.


Neurosurgery ◽  
2017 ◽  
Vol 64 (CN_suppl_1) ◽  
pp. 230-230 ◽  
Author(s):  
Shaheen Ahmed ◽  
Sven Vanneste

Abstract INTRODUCTION Minimally invasive neuromodulation such as spinal cord stimulation (SCS) and occipital nerve stimulation (ONS) have shown to be successful for treatment of different types of pain such as chronic back or leg pain, complex regional pain syndrome (CRPS), and fibromyalgia. Recently, novel stimulation paradigm called burst stimulation was developed that suppresses pain to better extent than classical tonic stimulation. From clinical point of view, burst stimulation is very promising; however, little is known about its underlying mechanism. Hence, in this work we investigate mechanism of action for burst stimulation in different patient groups and controls using different neuroimaging multimodalities such as EEG, fMRI and PET. METHODS Control subjects and patients with chronic back or leg pain, CRPS, or fibromyalgia enrolled for study. Both controls and patients received SCS or ONS and sham, tonic, and burst stimulation in fMRI, PET, and EEG. RESULTS >EEG shows significant changes for burst stimulation compared to tonic and sham stimulation; evident by increased activity at dorsal anterior cingulate cortex (dACC), dorsolateral prefrontal cortex (dPFC), primary somatosensory cortex, and posterior cingulate cortex (PSC) in alpha frequency band. PET further confirmed by showing increased tracer capitation for burst in dACC, pregenual anterior cingulate cortex (pgACC), parahippocampus, and fusiform gyrus. Furthermore, fMRI showed burst changes in dACC, dPFC, pgACC, cerebellum, hypothalamus, and premotor cortex. A conjunction analysis between tonic and burst stimulation demonstrated theta activity is commonly modulated in somatosensory cortex and PSC. CONCLUSION Our data suggest that burst and tonic stimulation modulate ascending lateral and descending pain inhibitory pathways. Burst stimulation adds by modulating the medial pain pathway, possibly by direct modulation of spinothalamic pathway, as suggested by animal research. Burst normalizes an imbalance between ascending pain via medial system and descending pain inhibitory activity, which could be a plausible reason it's better than to tonic stimulation.


2018 ◽  
Vol 44 (suppl_1) ◽  
pp. S248-S248
Author(s):  
Kazutaka Ohi ◽  
Takamitsu Shimada ◽  
Kiyotaka Nemoto ◽  
Yuzuru Kataoka ◽  
Toshiki Yasuyama ◽  
...  

2017 ◽  
Vol 23 (7) ◽  
pp. 539-550 ◽  
Author(s):  
Rachel E. Lean ◽  
Tracy R. Melzer ◽  
Samudragupta Bora ◽  
Richard Watts ◽  
Lianne J. Woodward

AbstractObjectives: This study examines the selective, sustained, and executive attention abilities of very preterm (VPT) born children in relation to concurrent structural magnetic resonance imaging (MRI) measures of regional gray matter development at age 12 years. Methods: A regional cohort of 110 VPT (≤32 weeks gestation) and 113 full term (FT) born children were assessed at corrected age 12 years on the Test of Everyday Attention-Children. They also had a structural MRI scan that was subsequently analyzed using voxel-based morphometry to quantify regional between-group differences in cerebral gray matter development, which were then related to attention measures using multivariate methods. Results: VPT children obtained similar selective (p=.85), but poorer sustained (p=.02) and executive attention (p=.01) scores than FT children. VPT children were also characterized by reduced gray matter in the bilateral parietal, temporal, prefrontal and posterior cingulate cortices, bilateral thalami, and left hippocampus; and increased gray matter in the occipital and anterior cingulate cortices (family-wise error–corrected p<.05). Poorer sustained auditory attention was associated with increased gray matter in the anterior cingulate cortex (p=.04). Poor executive shifting attention was associated with reduced gray matter in the right superior temporal cortex (p=.04) and bilateral thalami (p=.05). Poorer executive divided attention was associated with reduced gray matter in the occipital (p=.001), posterior cingulate (p=.02), and left temporal (p=.01) cortices; and increased gray matter in the anterior cingulate cortex (p=.001). Conclusions: Disturbances in regional gray matter development appear to contribute, at least in part, to the poorer attentional performance of VPT children at school age. (JINS, 2017, 23, 539–550)


Sign in / Sign up

Export Citation Format

Share Document