scholarly journals Procoagulant Platelets: Mechanisms of Generation and Action

2021 ◽  
Vol 41 (02) ◽  
pp. 146-153
Author(s):  
N.A. Podoplelova ◽  
D.Y. Nechipurenko ◽  
A.A. Ignatova ◽  
A.N. Sveshnikova ◽  
M.A. Panteleev

AbstractDuring the past decades, it has been increasingly recognized that the major function of accelerating membrane-dependent reactions of blood coagulation is predominantly implemented by a subset of activated platelets. These procoagulant platelets (also called collagen- and thrombin-activated or COAT, coated, necrotic, although there could be subtle differences between these definitions) are uniquely characterized by both procoagulant activity and, at the same time, inactivated integrins and profibrinolytic properties. The mechanisms of their generation both in vitro and in situ have been increasingly becoming clear, suggesting unique and multidirectional roles in hemostasis and thrombosis. In this mini-review, we shall highlight the existing concepts and challenges in this field.

2007 ◽  
Vol 97 (03) ◽  
pp. 425-434 ◽  
Author(s):  
Dmitry Kireev ◽  
Nadezhda Popenko ◽  
Aleksei Pichugin ◽  
Mikhail Panteleev ◽  
Olga Krymskaya ◽  
...  

SummaryPlatelet microparticles (PMPs) are small vesicles released from blood platelets upon activation. The procoagulant activity of PMPs has been previously mainly characterized by theirability to bind coagulation factors VIII and Va in reconstructed systems. It can be supposed that PMPs can contribute to the development of thrombotic complications in the pathologic states associated with the increase of their blood concentration. In this study we compared procoagulant properties of calcium ionophore A23187-activated platelets and PMPs using several in-vitro models of hemostasis. Surface densities of phosphatidylserine, CD61, CD62P and factor X bound per surface area unit were determined by flow cytometry. They were 2.7-, 8.4-, 4.3-, and 13-fold higher for PMPs than for activated platelets, respectively. Spatial clot growth rate (Vclot) in the reaction-diffus ion experimental model and endogenous thrombin potential (ETP) were determined in plasma, which was depleted of phospholipid cell surfaces by ultra-centrifugation and supplemented with activated platelets or PMPs at different concentrations. Both Vcllot and ETP rapidly increased with the increase of PMP or platelet concentration until saturation was reached. The plateau values of Vclot and ETP for activated platelets and PMPs were similar. In both assays, the procoagulant activity of one PMP was almost equal to that of one activated platelet despite at least two-orders-of-magnitude difference in their surface areas. This suggests that the PMP surface is approximately 50- to 100-fold more procoagulant than the surface of activated platelets.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3736-3736
Author(s):  
Anna Falanga ◽  
Alfonso Vignoli ◽  
Marina Marchetti ◽  
Laura Russo ◽  
Marina Panova-Noeva ◽  
...  

Abstract Clinical data suggest an increased thrombotic risk in patients with ET or PV carrying the JAK2V617F mutation. Laboratory data from our group show that ET patients carrying the JAK2V617F mutation are characterized by an enhanced platelet and neutrophil activation status (Falanga et al, Exp Hem 2007) and blood coagulation activation (Marchetti et al, Blood 2008), as compared to JAK2 wild-type ET. Since monocytes significantly contribute to blood coagulation activation as an important source of circulating tissue factor (TF), in this study we aimed to characterize the prothrombotic phenotype of monocytes from ET and PV patients and to evaluate whether and to what extent it is influenced by the JAK2V617F mutation. Twenty-four ET patients (10 JAK2 wild-type; 14 JAK2V617F carriers with 2%–35% mutant allele burden), 27 PV patients (all JAK2V617F carriers, 16 with 9%– 44% and 11 with 60%–100% allele burden, respectively), and 20 age-matched healthy subjects (controls, C) were enrolled into the study. Monocyte-associated TF antigen was measured on the cell surface by whole blood flow-cytometry, in both basal condition and after in vitro stimulation by bacterial endotoxin (lypopolysaccharide, LPS), as well as in cell lysates by ELISA. Monocyte procoagulant activity was evaluated by the Calibrated Automated Thrombogram (CAT) as the capacity of isolated monocyte lysates to induce thrombin generation in normal pool plasma. In basal conditions, significantly (p<0.05) higher surface levels of TF were measured on monocytes from ET (17.1±3.2% positive cells) and PV (24.4±3.7% positive cells) patients compared to C (8.2±1.9% positive cells). Similarly, the total TF antigen content of cell lysates was significantly increased in patients compared to C. The analysis of the data according to JAK2V617F mutational status, showed a gradient of increased TF expression starting from JAK2V617F negative patients (11.7±2.5%), versus JAK2V617F ET and PV subjects with <50% allele burden (20.3±3.6% and 23.2±2.8%, respectively), versus JAK2V617F PV patients with >50% allele burden (26.1±4.2%). The in vitro LPS stimulation significantly increased TF expression on monocytes from all study subjects and C compared to non-stimulated monocytes (p<0.05 for all groups), with a more elevated expression by monocytes from PV and ET patients compared to C. However, the relative increase in TF expression was greater in C (=3.7 fold) compared to both ET (=2.2 fold) and PV (=2 fold) patients. As observed in basal conditions, LPS-induced TF was higher in JAK2V617F positive patients as compared to negative, with the highest expression in JAK2V617F PV carriers with >50% allele load. Thrombin generation induced by monocytes from ET and PV patients was significantly increased compared to controls, as determined by significantly higher thrombin peaks (ET=145±12, PV=142±17, C=72.2±5 nM), and quantity of thrombin generated in time, i.e. the endogenous thrombin potential (ETP) (ET=1143±34, PV=1074±64, C=787±58 nM*min). The JAK2V617F PV subjects with >50% allele burden presented with the highest thrombin generation capacity (peak= 184±34 nM; ETP= 1268±32 nM). Our data indicate that the expression of the JAK2V617F mutation in ET and PV patients may confer to monocytes a different hemostatic phenotype in terms of increased expression of surface TF and thrombin generation capacity. These findings are in agreement with the previous observation of a hypercoagulable state associated with this mutation and suggest a new mechanism linking hemostatic cellular phenotypic alteration to genetic dysfunction in patients with myeloproliferative disease.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2538-2538
Author(s):  
Ruishuang Ma ◽  
Xiaoming Wu ◽  
Lixiu Wang ◽  
Lu Zhao ◽  
Yan Zhang ◽  
...  

Abstract Introduction: Disorders of coagulation are common in sepsis, with disseminated intravascular coagulation (DIC) occurring in approximately 35 % of severe cases, contributing to microvascular dysfunction and death. Intensive platelet activation in sepsis facilitates platelet aggregation, leading to the formation of microthrombi and platelet depletion. This results in the development of DIC and sepsis-associated thrombocytopenia. Therefore, platelets must be cleared locally and quickly in the early phase of activation. Previous studies mainly focused on the clearance of activated cold-stored and aging platelets as well as platelets in immune-mediated thrombocytopenia. However, platelet activation and their clearance in sepsis are poorly understood. Platelets can form aggregates with leukocytes resulting in leukocyte death, the release of extracellular traps (ETs), increased endothelial permeability, and aggravated thrombosis. This study explored an alternate pathway for platelet disposal mediated by endothelial cells (ECs) through phosphatidylserine (PS) and examined the effect of platelet clearance on procoagulant activity (PCA) in sepsis. Methods: The subjects were septic patients (n=48) and healthy controls (n=48). Platelet engulfment by ECs was observed by electron microscopy, immunofluorescence, or immunochemistry both in vitro and in animal models. The PCA of platelets was measured by clotting time, purified coagulation complex assays, and fibrin formation. Results: Platelets in septic patients demonstrated increased levels of surface activation markers and apoptotic vesicle formation, and also formed aggregates with leukocytes. Activated platelets adhered to and were ultimately digested by ECs in vivo and in vitro. Blocking PS on platelets or integrin on ECs attenuated platelet clearance, resulting in increased platelet count in a mouse model of sepsis (p<0.05). Furthermore, platelet removal by ECs resulted in a corresponding decrease in platelet-leukocyte complex formation and markedly reduced generation of factor Xa and thrombin on platelets (p<0.01). Pretreatment with lactadherin increased phagocytosis of platelets by approximately 2-fold, diminished PCA by 70%, prolonged coagulation time, and attenuated fibrin formation by 50%. A large decline in PS exposure on platelets, associated platelet PCA, and PLA formation is seen in patients in remission, which could be attributed to the elimination of abnormal platelets. Conclusions: Our results suggest that PS-mediated clearance of activated platelets by the endothelium results in an anti-inflammatory, anticoagulant, and antithrombotic effect that contributes to maintaining platelet homeostasis during acute inflammation. Antiplatelet treatment has been suggested as a novel strategy in sepsis, and we speculate that promoting efficient removal of activated and apoptotic platelets could further improve patient outcomes. Therefore, clearance of activated platelets earlier in the disease process could hasten recovery of homeostasis in circulation by eliminating catalytic platforms for the coagulation pathway, protecting blood cells from excessive activation, and restoring their normal function. Endothelium, at least in part, contributes to platelet disposal and may further improve the hypercoagulable status in inflammation. It is noteworthy that PS-mediated and lactadherin-strengthened platelet engulfment may modify coagulopathy, and thus provide a new modality for treatment of septic clotting disorders. Figure 1 Phagocytosis of platelets by endothelial cells in vitro. Figure 1. Phagocytosis of platelets by endothelial cells in vitro. Figure 1 Effect of lactadherin-mediated phagocytosis on procoagulant activity and fibrin formation. Figure 1. Effect of lactadherin-mediated phagocytosis on procoagulant activity and fibrin formation. Disclosures No relevant conflicts of interest to declare.


1996 ◽  
Vol 270 (3) ◽  
pp. R599-R604 ◽  
Author(s):  
S. Nilsson ◽  
M. E. Forster ◽  
W. Davison ◽  
M. Axelsson

The mechanisms of splenic control in the Antarctic fish, Pagothenia borchgrevinki, were investigated using isolated spleen and mesenteric artery strips in vitro and perfused spleen preparations in situ. Splenosomatic index (SSI) [100 x (spleen wt/body wt)] and hematocrit were determined in animals treated with atropine and phentolamine. Atropine injection increased the SSI from 0.60 +/- 0.06 to 0.89 +/- 0.04, whereas phentolamine decreased SSI to 0.45 +/- 0.03. In atropine-injected fish, hematocrit was 18.6 +/- 1.4 before and 6.6 +/- 0.8% 3 h after injection. Electrical stimulation of the splenic nerves produced biphasic flow responses. In 11 of 12 tested preparations, atropine (3 x 10(-7) to 10(-6) M) abolished the response, suggesting a major cholinergic component in the splenic innervation. Isolated spleen strip preparations contracted in response to carbachol, a response that was antagonized by atropine. The response to acetylcholine was markedly enhanced by the specific cholinesterase inhibitor BW-284c51. Catecholamine effects were somewhat irregular, and maximal contraction force with epinephrine and norepinephrine was 41 and 56%, respectively, of the carbachol response. The results suggest a mainly, if not solely, cholinergic autonomic control of the borch spleen, and a major function of the cholinergic innervation in the control of hematocrit in this species.


2006 ◽  
Vol 203 (11) ◽  
pp. 2433-2440 ◽  
Author(s):  
Hansjörg Schwertz ◽  
Neal D. Tolley ◽  
Jason M. Foulks ◽  
Melvin M. Denis ◽  
Ben W. Risenmay ◽  
...  

Tissue factor (TF) is an essential cofactor for the activation of blood coagulation in vivo. We now report that quiescent human platelets express TF pre-mRNA and, in response to activation, splice this intronic-rich message into mature mRNA. Splicing of TF pre-mRNA is associated with increased TF protein expression, procoagulant activity, and accelerated formation of clots. Pre-mRNA splicing is controlled by Cdc2-like kinase (Clk)1, and interruption of Clk1 signaling prevents TF from accumulating in activated platelets. Elevated intravascular TF has been reported in a variety of prothrombotic diseases, but there is debate as to whether anucleate platelets—the key cellular effector of thrombosis—express TF. Our studies demonstrate that human platelets use Clk1-dependent splicing pathways to generate TF protein in response to cellular activation. We propose that platelet-derived TF contributes to the propagation and stabilization of a thrombus.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2101-2101
Author(s):  
Sreeparna Vappala ◽  
Suzana Straus ◽  
Edward L. Pryzdial ◽  
Edward Conway ◽  
Jayachandran Kizhakkedathu

Abstract Introduction- Several in vivo studies and clinical studies have demonstrated extracellular DNA as a mediator of coagulation and this effect was reversed by the administration of DNA degrading enzyme DNase I. However, there is no clear understanding of the mechanism by which extracellular DNA activates coagulation in vitro. Conventionally, it was thought to be the activator of the contact pathway. But recent studies have shown that extracellular DNA isolated without contaminants like silica particles is a weak activator of the contact pathway. In this study, we have investigated the mechanism by which extracellular DNA is contributing to coagulation. Corroborating with recent results, we show that extracellular genomic DNA is a weak activator contact pathway. We determined that extracellular DNA accelerate fibrinogen polymerization by thrombin via a possible template mechanism. Our biophysical studies corroborate the interaction of DNA, thrombin, and fibrinogen. Understanding the mechanism of DNA induced blood coagulation will help address the gaps in the literature as well as develop inhibitors against DNA- mediated thrombosis. Methods- Silica-free extracellular DNA was purified with the PAXgene™ Blood DNA Kit. Contact activation in plasma was measured by monitoring the cleavage of the substrate S2302. To study the contact independent activation of plasma clotting by extracellular DNA, 1.5 µM Corn Trypsin Inhibitor (CTI) was applied to the plasma. Next, acceleration of fibrinogen polymerization by thrombin in presence of extracellular DNA was measured by monitoring the absorbance of 350 nm. Interaction of DNA with fibrinogen and thrombin in phosphate buffer was determined by CD spectroscopy. Results- Our results show that silica-free extracellular genomic DNA is a weak activator of the contact pathway of coagulation [Fig-A]. Moreover, genomic DNA accelerated the plasma clotting even when the contact pathway was inhibited with CTI indicating a contact independent mechanism of the procoagulant activity of extracellular DNA. Interestingly, the presence of extracellular DNA accelerated the polymerization of fibrinogen in presence of thrombin [Fig-B]. A bell-shaped dose-response curve for extracellular DNA indicates a likely template mechanism in which both thrombin and fibrinogen could assemble on the DNA molecule. These results are supported by the results from the CD spectroscopy studies where an alteration of the structure of fibrinogen and thrombin can be noticed in presence of extracellular DNA. Confocal studies further corroborate this observation. Our results also show different nucleic acids activate coagulation via different pathways. Significance- Procoagulant activity of extracellular DNA is demonstrated in several mouse models. However, a clear understanding of the mechanism of procoagulant activity of DNA in vitro has been challenging due to the caveats in the isolation of extracellular DNA where it is often contaminated with silica particles. Here we show a novel procoagulant mechanism of cell- free DNA where it augments the polymerization of fibrinogen by thrombin. These results provide insights into the mechanism of procoagulant activity of DNA which is key to develop therapeutics against procoagulant DNA. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Volodymyr Gryshchuk ◽  
Natalya Galagan

Interaction of nanoparticles with the blood coagulation is important prior to their using as the drug carriers or therapeutic agents. The aim of present work was studying of the primary effects of silica nanoparticles (SiNPs) on haemostasisin vitro. We studied the effect of SiNPs on blood coagulation directly estimating the activation of prothrombin and factor X and to verify any possible effect of SiNPs on human platelets. It was shown that SiNPs shortened coagulation time in APTT and PT tests and increased the activation of factor X induced by RVV possibly due to the sorption of intrinsic pathway factors on their surface. SiNPs inhibited the aggregation of platelet rich plasma induced by ADP but in the same time partially activated platelets as it was shown using flow cytometry. The possibility of SiNPs usage in nanomedicine is strongly dependant on their final concentration in bloodstream and the size of the particles that are used. However SiNPs are extremely promising as the haemostatic agents for preventing the blood loss after damage.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Sign in / Sign up

Export Citation Format

Share Document