Synthesis of 6-Alkynyl-6-hydroxyindoloquinazolinone Scaffolds via Copper-Catalyzed Alkynylation of Tryptanthrins

Synlett ◽  
2021 ◽  
Author(s):  
Yu Guo ◽  
Ebrahim-Alkhalil M. A. Ahmed ◽  
Hongxin Liu ◽  
Xinhua Li ◽  
Juan Li ◽  
...  

We report a copper catalyzed direct alkynylation reaction of tryptanthrins with terminal alkynes under mild reaction conditions. The developed method provides an array of synthetic building blocks of 6-alkynyl-6-hydroxyindoloquinazolinone compounds in moderate to good yields with varied functional group compatibility. Furthermore, the obtained adducts can be smoothly converted into versatile building blocks via hydrogenation, hydration and further Sonogashira coupling transformations.

2018 ◽  
Vol 42 (5) ◽  
pp. 235-238 ◽  
Author(s):  
Li-fen Peng ◽  
Bing-hao Wang ◽  
Ming Wang ◽  
Zi-long Tang ◽  
Yan-zi Jiang ◽  
...  

A practical one-pot approach for the synthesis of arylalkynyl-substituted terminal alkynes has been developed through a deprotection/ stannylation of a phenylethynyl phosphine oxide followed by Migita–Kosugi–Stille coupling, avoiding the longer synthetic route involving repeated deprotection/Sonogashira coupling. Other features of this approach include mild reaction conditions, excellent yields, facile isolation of products and wide functional group tolerance.


2012 ◽  
Vol 84 (4) ◽  
pp. 869-878 ◽  
Author(s):  
Dustin E. Gross ◽  
Ling Zang ◽  
Jeffrey S. Moore

This report details the advances in synthetic strategies toward arylene–ethynylene macrocycles (AEMs). After a brief description of traditional methods, we summarize recent advances based on dynamic covalent chemistry (DCC) whereby a highly active and functional group tolerant alkyne metathesis catalyst yields scalable quantities of AEMs under thermodynamic controlled reaction conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Na Yu ◽  
Yang Xu ◽  
Tao Liu ◽  
Haiping Zhong ◽  
Zunkai Xu ◽  
...  

AbstractIsopropenyl ethers are critical intermediates for accessing medicinally valuable ketal-based prodrugs and biomaterials, but traditional approaches for the synthesis of isopropenyl ethers suffer from poor functional group compatibility and harsh reaction conditions. Here, we develop an organocatalytic transisopropenylation approach to solve these challenges, enabling the synthesis of isopropenyl ethers from various hydroxyl-group-containing small-molecule drugs, polymers, and functional building blocks. The method provides a straightforward and versatile synthesis of isopropenyl ethers, features excellent tolerance of diverse functional groups, applies to a wide range of substrates, and allows scalable synthesis. The development of this organocatalytic transisopropenylation approach enables access to modular preparation of various acid-sensitive ketal-linked prodrugs and functionalized ketalated biomaterials. We expect our syntheses and transformations of isopropenyl ethers will find utility in several diverse fields, including medicinal chemistry, drug delivery, and biomaterials.


Author(s):  
Jie Jack Li ◽  
Chris Limberakis ◽  
Derek A. Pflum

Searching for reaction in organic synthesis has been made much easier in the current age of computer databases. However, the dilemma now is which procedure one selects among the ocean of choices. Especially for novices in the laboratory, it becomes a daunting task to decide what reaction conditions to experiment with first in order to have the best chance of success. This collection intends to serve as an "older and wiser lab-mate" one could have by compiling many of the most commonly used experimental procedures in organic synthesis. With chapters that cover such topics as functional group manipulations, oxidation, reduction, and carbon-carbon bond formation, Modern Organic Synthesis in the Laboratory will be useful for both graduate students and professors in organic chemistry and medicinal chemists in the pharmaceutical and agrochemical industries.


Synthesis ◽  
2020 ◽  
Vol 52 (22) ◽  
pp. 3466-3472
Author(s):  
Yunkui Liu ◽  
Bingwei Zhou ◽  
Qiao Li ◽  
Hongwei Jin

We herein describe a Ni-catalyzed multicomponent coupling reaction of alkyl halides, isocyanides, and H2O to access alkyl amides. Bench-stable NiCl2(dppp) is competent to initiate this transformation under mild reaction conditions, thus allowing easy operation and adding practical value. Substrate scope studies revealed a broad functional group tolerance and generality of primary and secondary alkyl halides in this protocol. A plausible catalytic cycle via a SET process is proposed based on preliminary experiments and previous literature.


Synthesis ◽  
2021 ◽  
Author(s):  
Hongji Li ◽  
Wenjie Zhang ◽  
Xueyan Liu ◽  
Zhenfeng Tian

AbstractWe herein report a new nitrogen-directed Rh(III)-catalyzed C(sp2)–H bond functionalization of N-nitrosoanilines and azoxybenzenes with maleimides as a coupling partner, in which the olefination/alkylation process can be finely controlled at room temperature by variation of the reaction conditions. This method shows excellent functional group tolerance, and presents a mild access to the resulting olefination/alkylation products in moderate to good yields.


Organics ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 107-117
Author(s):  
Mattia Forchetta ◽  
Valeria Conte ◽  
Giulia Fiorani ◽  
Pierluca Galloni ◽  
Federica Sabuzi

Owing to the attractiveness of organic phosphonic acids and esters in the pharmacological field and in the functionalization of conductive metal-oxides, the research of effective synthetic protocols is pivotal. Among the others, ω-bromoalkylphosphonates are gaining particular attention because they are useful building blocks for the tailored functionalization of complex organic molecules. Hence, in this work, the optimization of Michaelis–Arbuzov reaction conditions for ω-bromoalkylphosphonates has been performed, to improve process sustainability while maintaining good yields. Synthesized ω-bromoalkylphosphonates have been successfully adopted for the synthesis of new KuQuinone phosphonate esters and, by hydrolysis, phosphonic acid KuQuinone derivatives have been obtained for the first time. Considering the high affinity with metal-oxides, KuQuinones bearing phosphonic acid terminal groups are promising candidates for biomedical and photo(electro)chemical applications.


2021 ◽  
Author(s):  
Shi-Ping Wu ◽  
Dong-Kai Wang ◽  
Qing-Qing Kang ◽  
Guo-Ping Ge ◽  
Hongxing Zheng ◽  
...  

A novel sulfonyl radical triggered selective iodosulfonylation and bicyclizations of 1,6-dienes has been described for the first time. High selectivity and efficiency, mild reaction conditions, excellent functional group compatibility, and...


2021 ◽  
Author(s):  
Long Zheng ◽  
Zhanjing Wang ◽  
Chen Li ◽  
Yong Wu ◽  
Zhaohong Liu ◽  
...  

We reported herein the first example of N3 radical-mediated azidosulfonylation of alkynes, affording the β-azidovinyl sulfone products in broad substrate scope, excellent functional group compatibility, and high yield. DFT calculations...


Synlett ◽  
2020 ◽  
Author(s):  
Margaret R Jones ◽  
Nathan D. Schley

The field of catalytic C-H borylation has grown considerably since its founding, providing a means for the preparation of synthetically versatile organoborane products. While sp2 C-H borylation methods have found widespread and practical use in organic synthesis, the analogous sp3 C-H borylation reaction remains challenging and has seen limited application. Existing catalysts are often hindered by incomplete consumption of the diboron reagent, poor functional group tolerance, harsh reaction conditions, and the need for excess or neat substrate. These challenges acutely affect C-H borylation chemistry of unactivated hydrocarbon substrates, which has lagged in comparison to methods for the C-H borylation of activated compounds. Herein we discuss recent advances in sp3 C-H borylation of undirected substrates in the context of two particular challenges: (1) utilization of the diboron reagent and (2) the need for excess or neat substrate. Our recent work on the application of dipyridylarylmethane ligands in sp3 C-H borylation has allowed us to make contributions in this space and has presented an additional ligand scaffold to supplement traditional phenanthroline ligands.


Sign in / Sign up

Export Citation Format

Share Document