Hepatitis C Virus activates auto- and paracrine circuits to modify surface expression of growth factor receptors of the Erb family

2015 ◽  
Vol 53 (01) ◽  
Author(s):  
S Eisenbürger ◽  
R Bartenschlager ◽  
D Häussinger ◽  
JG Bode
PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0148711 ◽  
Author(s):  
Sabine Stindt ◽  
Patricia Cebula ◽  
Ute Albrecht ◽  
Verena Keitel ◽  
Jan Schulte am Esch ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Iman S. Naga ◽  
Amel Abdel Fattah Kamel ◽  
Said Ahmed Ooda ◽  
Hadeer Muhammad Fath Elbab ◽  
Rania Mohamed El-Sharkawy

Abstract Background Hepatitis C virus infection is a global health challenge with Egypt being one of the highly affected countries. IL-10 has been suggested as a suitable marker to assess necroinflammation and to monitor the progression of liver damage. Vascular endothelial growth factor (VEGF) is a potent angiogenic factor playing a central role in many physiological as well as pathological processes. Several factors can be predictive of the response to treatment and achievement of SVR; some of which are host-related, and others are virus-related. The gene expression of IL-10 and VEGF have multiple effects for treatment response. The aim of the present work was to study the effect of treatment with directly acting agents (DAA) on the expression of VEGF and IL-10 genes in chronic hepatitis C virus-infected Egyptian genotype-4a patients. Twenty-five HCV subjects where evaluated for IL-10 and VEGF gene expression before and after treatment with DAA. Results IL-10 expression was downregulated in 92% of the cases. VEGF expression was heterogeneous showing spreading of values along a wide range with 64% of the cases being downregulated. Conclusion DAAs do not completely reverse the immunological imprints established upon chronic HCV infection.


2015 ◽  
Vol 62 ◽  
pp. S577
Author(s):  
S. Eisneburger ◽  
C. Groepper ◽  
B. Ralf ◽  
D. Haussinger ◽  
J.G. Bode

2005 ◽  
Vol 86 (4) ◽  
pp. 1027-1033 ◽  
Author(s):  
Andrew Macdonald ◽  
Julia Ka Yu Chan ◽  
Mark Harris

Hepatitis C virus non-structural NS5A protein inhibits epidermal growth factor (EGF)-stimulated activation of the Ras–ERK mitogen-activated protein kinase pathway at a point upstream of Ras activation. To determine the mechanism of this inhibition, the events occurring between the EGF receptor and Ras in Huh-7 cells harbouring the HCV subgenomic replicon were investigated. It was shown that, following EGF stimulation, these cells exhibited decreased EGF receptor tyrosine phosphorylation, aberrant recruitment of the adaptor proteins ShcA and Grb2 to the EGF receptor, reduced phosphorylation of ShcA and reduced Ras activation in comparison with control cells. These data are consistent with effects of NS5A and/or other components of the replicon on multiple events occurring upstream of Ras.


2006 ◽  
Vol 81 (2) ◽  
pp. 588-598 ◽  
Author(s):  
George Koutsoudakis ◽  
Eva Herrmann ◽  
Stephanie Kallis ◽  
Ralf Bartenschlager ◽  
Thomas Pietschmann

ABSTRACT Recently a cell culture model supporting the complete life cycle of the hepatitis C virus (HCV) was developed. Searching for host cell determinants involved in the HCV replication cycle, we evaluated the efficiency of virus propagation in different Huh-7-derived cell clones. We found that Huh-7.5 cells and Huh7-Lunet cells, two former replicon cell clones that had been generated by removal of an HCV replicon by inhibitor treatment, supported comparable levels of RNA replication and particle production, whereas virus spread was severely impaired in the latter cells. Analysis of cell surface expression of CD81 and scavenger receptor class B type I (SR-BI), two molecules previously implicated in HCV entry, revealed similar expression levels for SR-BI, while CD81 surface expression was much higher on Huh-7.5 cells than on Huh7-Lunet cells. Ectopic expression of CD81 in Huh7-Lunet cells conferred permissiveness for HCV infection to a level comparable to that for Huh-7.5 cells. Modulation of CD81 cell surface density in Huh-7.5 cells by RNA interference indicated that a certain amount of this molecule (∼7 × 104 molecules per cell) is required for productive infection with a low dose of HCV. Consistent with this, we show that susceptibility to HCV infection depends on a critical quantity of CD81 molecules. While infection is restricted in cells expressing very small amounts of CD81, susceptibility rapidly rises within a narrow range of CD81 levels, reaching a plateau where higher expression does not further increase the efficiency of infection. Together these data indicate that a high density of cell surface-exposed CD81 is a key determinant for productive HCV entry into host cells.


Sign in / Sign up

Export Citation Format

Share Document