Inhibition of Thrombin-induced Neuronal Cell Death by Recombinant Thrombomodulin and E5510, a Synthetic Thrombin Receptor Signaling Inhibitor

1999 ◽  
Vol 82 (09) ◽  
pp. 1071-1077 ◽  
Author(s):  
Krishna Pada Sarker ◽  
Kazuhiro Abeyama ◽  
Jun-ichiro Nishi ◽  
Masanori Nakata ◽  
Takeshi Tokioka ◽  
...  

SummaryThrombin, a serine protease generated by the activation of the blood coagulation cascade following vessel injury, converts fibrinogen to fibrin, activates platelets and several coagulation factors, and plays a pivotal role in thrombosis and haemostasis. Thrombin acts as a mitogen and apoptosis inducer in a dose-dependent fashion. We have previously shown that thrombin caused proliferation of vascular smooth muscle cells (VSMCs). Here, we show that a low concentration of thrombin caused proliferation of mouse neuroblastoma (Neuro-2a) and human neuroblastoma (NB-1) cells, while higher concentrations affected cell viability in a time-dependent manner. Similar effects were observed when thrombin receptor agonist peptide (SFLLRNPNDKYEPF, TRAP) was applied. The dying cells showed nuclear condensation and fragmentation, suggesting that cell death occurred by apoptosis. The extent to which thrombin induced cell death was significantly attenuated by recombinant thrombomodulin (rTM), or by a minimum functional domain of TM, termed E456. Furthermore, a synthetic compound that inhibits signaling from the thrombin receptor, 4-cyano-5,5-bis (4-methoxyphenyl)-4-pentanoic acid (E5510), and the antioxidant N-acetyl L-cysteine (NAC), efficiently prevented thrombin-induced Neuro-2a cell death. Thus, thrombin inhibitors and antioxidant appear to neutralize thrombin toxicity.

2021 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
Mazatulikhma Mat Zain Mat Zain ◽  
Nursyamila Shamsuddin ◽  
Mohd Shihabuddin Ahmad Noorden

Methamphetamine (METH) was reported to caused neurotoxicity and cell death, in vitro. Centella asiatica or ‘pegaga’ is a native tropical herb with antioxidant and neuroprotective activities. Although the effects of Centella asiatica against oxidative stress and neuronal cell death have been reported in previous studies, however, the potential effects of Centella asiatica against psychostimulant methamphetamine (METH) are limited. Therefore, this study was aimed to evaluate the effects of Centella asiatica extract (CAE) against METH on all-trans retinoic acid, RA-differentiated human neuroblastoma, SH-SY5Y cells. The RA-differentiated SH-SY5Y cells were used to resemble dopaminergic neuronal-like cells. Cell viability was quantitatively assessed by 3-(4,5-dimethylthiazol-2-yl)-2 tetrazolium bromide, MTS assay.  CAE at varying concentrations from 1pg/mL to 1mg/mL significantly decreased the viability of the undifferentiated SH-SY5Y cells in a concentration-dependent manner. At 1mg/mL of CAE, significantly increased the viability of differentiated SH-SY5Y cells. Meanwhile, CAE at 100µg/mL and 1mg/mL significantly reversed the METH-induced neuronal cell death. The results revealed that promising treatment of CAE on METH-induced neurotoxicity is mediated by its high content of asiaticoside, asiatic acid, madecassoside and madecassic acid. Taken together, this study may suggest CAE as a potential therapeutic treatment for METH-induced neurotoxicity, in vitro.


2021 ◽  
Vol 22 (13) ◽  
pp. 6785
Author(s):  
Valeria Sogos ◽  
Paola Caria ◽  
Clara Porcedda ◽  
Rafaela Mostallino ◽  
Franca Piras ◽  
...  

Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4′-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death.


Oncogene ◽  
2017 ◽  
Vol 36 (40) ◽  
pp. 5593-5608 ◽  
Author(s):  
D Chen ◽  
Z Fan ◽  
M Rauh ◽  
M Buchfelder ◽  
I Y Eyupoglu ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1359
Author(s):  
Ibrahim Alfarrayeh ◽  
Edit Pollák ◽  
Árpád Czéh ◽  
András Vida ◽  
Sourav Das ◽  
...  

This study investigated the effect of CAPE on planktonic growth, biofilm-forming abilities, mature biofilms, and cell death of C. albicans, C. tropicalis, C. glabrata, and C. parapsilosis strains. Our results showed a strain- and dose-dependent effect of CAPE on Candida, and the MIC values were between 12.5 and 100 µg/mL. Similarly, the MBIC values of CAPE ranging between 50 and 100 µg/mL highlighted the inhibition of the biofilm-forming abilities in a dose-dependent manner, as well. However, CAPE showed a weak to moderate biofilm eradication ability (19-49%) on different Candida strains mature biofilms. Both caspase-dependent and caspase-independent apoptosis after CAPE treatment were observed in certain tested Candida strains. Our study has displayed typical apoptotic hallmarks of CAPE-induced chromatin margination, nuclear blebs, nuclear condensation, plasma membrane detachment, enlarged lysosomes, cytoplasm fragmentation, cell wall distortion, whole-cell shrinkage, and necrosis. In conclusion, CAPE has a concentration and strain-dependent inhibitory activity on viability, biofilm formation ability, and cell death response in the different Candida species.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Ken-ichiro Tanaka ◽  
Misato Kasai ◽  
Mikako Shimoda ◽  
Ayane Shimizu ◽  
Maho Kubota ◽  
...  

Trace metals such as zinc (Zn), copper (Cu), and nickel (Ni) play important roles in various physiological functions such as immunity, cell division, and protein synthesis in a wide variety of species. However, excessive amounts of these trace metals cause disorders in various tissues of the central nervous system, respiratory system, and other vital organs. Our previous analysis focusing on neurotoxicity resulting from interactions between Zn and Cu revealed that Cu2+ markedly enhances Zn2+-induced neuronal cell death by activating oxidative stress and the endoplasmic reticulum (ER) stress response. However, neurotoxicity arising from interactions between zinc and metals other than copper has not been examined. Thus, in the current study, we examined the effect of Ni2+ on Zn2+-induced neurotoxicity. Initially, we found that nontoxic concentrations (0–60 μM) of Ni2+ enhance Zn2+-induced neurotoxicity in an immortalized hypothalamic neuronal cell line (GT1-7) in a dose-dependent manner. Next, we analyzed the mechanism enhancing neuronal cell death, focusing on the ER stress response. Our results revealed that Ni2+ treatment significantly primed the Zn2+-induced ER stress response, especially expression of the CCAAT-enhancer-binding protein homologous protein (CHOP). Finally, we examined the effect of carnosine (an endogenous peptide) on Ni2+/Zn2+-induced neurotoxicity and found that carnosine attenuated Ni2+/Zn2+-induced neuronal cell death and ER stress occurring before cell death. Based on our results, Ni2+ treatment significantly enhances Zn2+-induced neuronal cell death by priming the ER stress response. Thus, compounds that decrease the ER stress response, such as carnosine, may be beneficial for neurological diseases.


2019 ◽  
Vol 116 (47) ◽  
pp. 23760-23771 ◽  
Author(s):  
Manish Sharma ◽  
Uri Nimrod Ramírez-Jarquín ◽  
Oscar Rivera ◽  
Melissa Kazantzis ◽  
Mehdi Eshraghi ◽  
...  

Elimination of dysfunctional mitochondria via mitophagy is essential for cell survival and neuronal functions. But, how impaired mitophagy participates in tissue-specific vulnerability in the brain remains unclear. Here, we find that striatal-enriched protein, Rhes, is a critical regulator of mitophagy and striatal vulnerability in brain. In vivo interactome and density fractionation reveal that Rhes coimmunoprecipitates and cosediments with mitochondrial and lysosomal proteins. Live-cell imaging of cultured striatal neuronal cell line shows Rhes surrounds globular mitochondria, recruits lysosomes, and ultimately degrades mitochondria. In the presence of 3-nitropropionic acid (3-NP), an inhibitor of succinate dehydrogenase, Rhes disrupts mitochondrial membrane potential (ΔΨm) and promotes excessive mitophagy and cell death. Ultrastructural analysis reveals that systemic injection of 3-NP in mice promotes globular mitochondria, accumulation of mitophagosomes, and striatal lesion only in the wild-type (WT), but not in the Rhes knockout (KO), striatum, suggesting that Rhes is critical for mitophagy and neuronal death in vivo. Mechanistically, Rhes requires Nix (BNIP3L), a known receptor of mitophagy, to disrupt ΔΨm and promote mitophagy and cell death. Rhes interacts with Nix via SUMO E3-ligase domain, and Nix depletion totally abrogates Rhes-mediated mitophagy and cell death in the cultured striatal neuronal cell line. Finally, we find that Rhes, which travels from cell to cell via tunneling nanotube (TNT)-like cellular protrusions, interacts with dysfunctional mitochondria in the neighboring cell in a Nix-dependent manner. Collectively, Rhes is a major regulator of mitophagy via Nix, which may determine striatal vulnerability in the brain.


2012 ◽  
Vol 443 (1) ◽  
pp. 75-84 ◽  
Author(s):  
Ayano Fukuhara ◽  
Mao Yamada ◽  
Ko Fujimori ◽  
Yuya Miyamoto ◽  
Toshihide Kusumoto ◽  
...  

L-PGDS [lipocalin-type PGD (prostaglandin D) synthase] is a dual-functional protein, acting as a PGD2-producing enzyme and a lipid transporter. L-PGDS is a member of the lipocalin superfamily and can bind a wide variety of lipophilic molecules. In the present study we demonstrate the protective effect of L-PGDS on H2O2-induced apoptosis in neuroblastoma cell line SH-SY5Y. L-PGDS expression was increased in H2O2-treated neuronal cells, and the L-PGDS level was highly associated with H2O2-induced apoptosis, indicating that L-PGDS protected the neuronal cells against H2O2-mediated cell death. A cell viability assay revealed that L-PGDS protected against H2O2-induced cell death in a concentration-dependent manner. Furthermore, the titration of free thiols in H2O2-treated L-PGDS revealed that H2O2 reacted with the thiol of Cys65 of L-PGDS. The MALDI–TOF (matrix-assisted laser-desorption ionization–time-of-flight)-MS spectrum of H2O2-treated L-PGDS showed a 32 Da increase in the mass relative to that of the untreated protein, showing that the thiol was oxidized to sulfinic acid. The binding affinities of oxidized L-PGDS for lipophilic molecules were comparable with those of untreated L-PGDS. Taken together, these results demonstrate that L-PGDS protected against neuronal cell death by scavenging reactive oxygen species without losing its ligand-binding function. The novel function of L-PGDS could be useful for the suppression of oxidative stress-mediated neurodegenerative diseases.


Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1368 ◽  
Author(s):  
Kkot Kim ◽  
SeonAh Lee ◽  
Inhae Kang ◽  
Jung-Hee Kim

Oxidative stress, which is induced by reactive oxygen species (ROS), causes cellular damage which contributes to the pathogenesis of neurodegenerative diseases. Momordica charantia (MC), a traditional medicinal plant, is known to have a variety of health benefits, such as antidiabetic, anti-inflammatory, and antioxidant effects. However, it is unknown whether MC has protective effects against oxidative stress-induced neuronal cell death. The aim of this study was to investigate the potential action of MC on oxidative stress induced by H2O2. First, we tested whether the pretreatment of Momordica charantia ethanol extract (MCEE) attenuates H2O2-induced cell death in human neuroblastoma SK-N-MC cells. MCEE pretreatment significantly improved cell viability and apoptosis that deteriorated by H2O2. Further, MCEE ameliorated the imbalance between intracellular ROS production and removal through the enhancement of the intracellular antioxidant system. Intriguingly, the inhibition of apoptosis was followed by the blockage of mitochondria-dependent cell death cascades and suppression of the phosphorylation of the mitogen-activated protein kinase signaling (MAPKs) pathway by MCEE. Taken together, MCEE was shown to be effective in protecting against H2O2-induced cell death through its antioxidant and anti-apoptotic properties.


2012 ◽  
Vol 163 (2) ◽  
pp. 563-572 ◽  
Author(s):  
R. Dhanwani ◽  
M. Khan ◽  
A.S.B. Bhaskar ◽  
Rajpriya Singh ◽  
I.K. Patro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document